
Orchid: Image Latent Diffusion for Joint Appearance and Geometry Generation

Supplementary Material

In this supplementary material, we provide additional
details on our datasets, model architecture, ablations and
training methodology. We also provide a runtime analysis,
user-study, and additional qualitative results from Orchid
for text conditioned color-depth-normal generation as well
as image conditioned depth-normal prediction, and joint in-
painting tasks, including comparisons to more baselines.
We conclude with a discussion of our limitations, and scope
for future work. Novel-view synthesis videos of 3D recon-
structions using predictions from Orchid are provided on
the web page https://orchid3d.github.io, along with a dis-
cussion in Section 5.5.

1. Orchid details
1.1. Architecture
For our VAE, we use a convolutional encoder and decoder
with a latent dimension of 8, with 8× spatial downsampling.
The VAE has 7 input channels: 3 for RGB, 1 for depth, and
3 for surface normals. The discriminator (used only during
VAE training) is a small ConvNet + MLP.

Once the VAE is trained, we keep it frozen when training
the latent diffusion model. The latent diffusion model itself
is a UNet transformer similar to Stable Diffusion [13] which
is conditioned on both time and text embeddings. It has
approximately 2B parameters.

1.2. Training
We use a combination of RGB, depth, and normal losses
when training the VAE, with weights as explained in Sec-
tion 3.1 of our paper. Here, we provide the values of
the weights we used for our model. For Lx, we use
wx

1 = 1, wx
2 = 0.1, wx

3 = 0.1, wx
4 = 1. For Ld, we use

wd
1 = 1, wd

2 = 0.5. We use wn = 1 for Ln. We also use
wdistill = 10−6 for Ldistill and wKL = 10−3 for LKL.
Our choice of loss components and their weights for Lx and
LKL are based on standard training recipes for VAEs used
in latent diffusion models. For losses we introduce, i.e, Ld,
Ln, and Ldistill, we obtained similar results with weights of
similar orders of magnitude, but dropping them completely
worsens quality (as shown in our ablations).

On 16 NVIDIA A100 GPUs, we take approximately 5
days to train the VAE, 2 days to finetune our LDM starting
from a color LDM, and 8-12 hours to finetune our image-
conditioned model.

1.3. Dataset construction
We provide details of the dataset we use for VAE and LDM
training in Table 1. When training the VAE, we sam-

Dataset Size Text Depth Normals

Hypersim 60k ✗ ✓ ✓
Virtual KITTI 21k ✗ ✓ ✗
Replica + GSO (Omnidata) 100k ✗ ✓ ✓
Taskonomy (Omnidata) 2M ✗ ✓ ✓
DIODE 25k ✗ ✓ ✓
Pseudo-labeled (ours) 110M ✓ ✓ ✓

Table 1. Dataset details: We use all the above datasets for training
the VAE, but only the pseudo-labeled text-image dataset, Hyper-
sim, and Replica + GSO for finetuning our LDM.

ple more heavily from the high-quality real world datasets,
rather than our dataset with teacher model predictions.
Whereas for the text-conditional LDM training, we sample
more heavily from the distillation dataset which contains
text-captions. For image-conditioned LDM finetuning, we
ignore the text captions, and sample from both real-world
and distillation data. While predictions from teacher models
are not perfect, models distilled from multiple teachers have
performed better in previous work[16]. We remove a few
rare examples where depth and normal teacher models dis-
gree (high depth-normal inconsistency) for significant parts
of the image.

2. Runtime analysis

Model Diff + Diff Diff + FF Orchid

Inference time (s / img) 4.2* 1.3* 1.2

Table 2. Runtime analysis: Orchid is the fastest way to gener-
ate color, depth, and normals. A fair runtime comparison is hard
since these methods vary in memory usage. Baselines using mul-
tiple models (*) cannot store all models on a GPU and need added
weight I/O time that is not included here.

We provide an analysis of the runtime taken for the dif-
ferent approaches discussed in Table 1 in our main paper in
Table 2. We report inference times for on a single H100 for
all three methods. Our joint generation of color, depth, and
normals is significantly faster than generating them with 3
different diffusion models. It is also faster than using dis-
criminative models for depth and normals after an image
diffusion process - 1.2 vs 1.3 s per image. Although this
difference may seem less significant, please note that we
do not include the time taken to move model parameters
to/from the GPU, which is required when using multiple
models. This I/O time is significantly greater than the infer-
ence time for discriminative models.

https://orchid3d.github.io


3. Ablation details
This section provides details for some of the ablations pro-
vided in our paper.
Unified appearance-geometry diffusion baseline with
disentangled latents: Orchid uses a unified joint latent
space for color-depth-normal generation. An alternative de-
sign to enable a unified color-depth-normal diffusion model
would be to explicitly encode all three modalities using sep-
arate latents (all produced by the same VAE), and finetune
the LDM to denoise a higher dimensional concatenation
of all three latents. We find that while this is a feasible
approach, the quality of generated images is significantly
worse than that of using a joint latent. Our hypothesis is that
this is likely due to a significant mismatch of the latent space
from the color image-only pretraining stage, as opposed to a
joint latent space that is similar in structure (due to the dis-
tillation loss) and dimensionality to the pretrained LDM’s
latent space. Quantitatively, Table 5 in our paper shows that
this disentangled latents model has a lower CLIP-similarity
score when evaluated on COCO captions. It does however
have a slightly higher LPIPS, likely because it uses the same
latent dimension to store color information alone. Our joint
latent however is significantly better on image-conditioned
prediction tasks, indicating that the model is able to learn an
effective joint latent representation of all three modalities.

Figure 1. Colormap for depth (left) and surface normal on a unit
hemisphere (right) used for all qualitative results in this paper.

4. Color generation quality

Method RGB generation metrics User preference (%)
CLIP (↑) LPIPS (↑) Aesthetics Text adherence

RGB LDM (ours-PT) 0.319 0.741 32.1 31.0
Orchid 0.316 0.764 47.4 46.9

No notable difference - - 20.5 22.1

Table 3. Quantitative evaluation and user study for RGB quality.
While the focus of our work is not to improve the qual-

ity of generated color images, we evaluated how the qual-
ity of Orchid’s text-conditioned color generations compare
to the pretrained RGB-only diffusion model that we fine-
tune from. In Table 3, we report the commonly used CLIP
score and LPIPS for both models on the MS-COCO dataset,
together with the findings of a user study we conducted.
We generated images from both models using different cap-
tions, and asked users to pick from 3 options - Orchid’s

image, the base LDM’s image, or notable difference. The
users were asked to vote on two different aspects: aesthet-
ics (overall quality of the image), text adherence (closeness
to the text caption). We surveyed 40 users with 25 images
each (1000 votes across both aspects in total). The quanti-
tative metrics show that Orchid’s generations are compa-
rable to the color-only baseline, while the user study in-
dicates that Orchid’s generations are slightly better, with
about 20% votes indicating no notable difference between
the two. These metrics depend significantly on the pretrain-
ing data and color-only model being used; Orchid maintains
the pretrained generation quality while enabling joint color-
depth-normal generation.

4.1. Note on depth-normal redundancy
Using a joint latent for color, depth, and normals minimizes
redundancy in our latent space, in comparison to using sepa-
rate latents for each modality. Depth and normals are highly
inter-dependent, as normals can be derived from (metric)
depth. A joint latent avoids the need for separate latents,
resulting in highly consistent predictions. To further vali-
date this redundancy, we performed a PCA analysis on con-
catenated (separate) depth and normal latents (8 dimensions
each, 1000 samples). Only 8 PCA bases (out of the full 16
dimensions) were needed to explain ¿ 95% variance, con-
firming the strong depth-normal redundancy.

5. Qualitative results
We provide additional qualitative results and comparisons
for the experiments in our paper. Colormaps used to visu-
alize the depth and surface normal predictions is shown in
Figure 1.

5.1. Note on depth map visualization
Orchid predicts affine-invariant inverse depth, unlike other
baselines Marigold [7] and GeoWizard [3] that predict
affine invariant depth normalized to [0, 1]. To compare
our depth qualitatively when ground truth depth is avail-
able (Figures 5, 6, 7, 8, 9), we align all predictions to the
ground truth by estimation a shift and scale offset using
least squares. When ground truth is not available (Figures 3
and 4), we inverted inverse-depth produced for our method,
while using the predicted depth for [7] and [3], which may
appear different due to an unknown inverse-depth shift. We
use the colormap in Figure 1.

5.2. Text conditioned joint generation
We show color-depth-normals generated by our model for
different text prompts in Figure 2. Figure 3 compares the
results from our model to a baseline that uses a color-only
LDM to first generate color, and then depth and normal dif-
fusion models to generate depth and surface normals. The
results from a single pass of our model are comparable to



Figure 2. Text conditioned generation: We show color, depth and normals generated by Orchid for different text prompts. We show two
results for each prompt.



these results. Figure 4 compares the depth and normals
generated by our model to those predicted by depth and nor-
mal prediction baselines [1, 7, 17] on our images (generated
along with depth and normals). In examples regions where
depth is ambiguous for generated images (e.g. background
structure in Figures 3, 4), predictions from our model are
qualitatively better. In other cases, our generated depth is
comparable to those of baselines [7] while our normals are
significantly better.

5.3. Monocular depth and normal estimation
Internet images: We show more depth and normal predic-
tions on in-the-wild images produced by Orchid in Figures
5, 6, 7, and 8. Figures 5 and 6 compare our joint predictions
to those from GeoWizard [3]. We find that our depth and
normals are more accurate (with fewer errors on large sec-
tions), even though GeoWizard’s predictions more detailed
in many cases. In Figures 7, and 8, we compare Orchid’s
predictions to Marigold [7]. We find that Orchid has bet-
ter depth estimates at longer ranges, and significantly bet-
ter normal estimates overall. Note that we need different
Marigold weights to predict depth and normals (unlike our
joint prediction model). When comparing colorized depth
maps on these datasets without ground truth depth, please
refer to the note in Section 5.1.
Zero-shot benchmark images: We show more depth and
normal predictions on the zero-shot depth and normal es-
timation benchmarks used in Section 4 of our paper in
Figures 10, 9, and 11. Figure 10 shows that Orchid is
competitive with diffusion-based depth prediction baselines
Marigold [7] and GeoWizard [3], while being slightly bet-
ter in some cases. Both [7] and [3] have a common fail-
ure mode where depth estimates are sensitive to image dis-
continuities, which our model is significantly less sensitive
to. Figure 9 shows that our model is significantly better
are depth estimation in outdoor environments, especially at
longer ranges. Figure 11 shows that our model is signifi-
cantly better at surface normals estimation, particularly on
objects with curved surfaces.

5.4. Joint inpainting
Section 4.4 of our paper explains how our model can be
used to jointly inpaint color-depth-normals. For this task,
we use as input paired color, depth, and normal images,
and a user-provided mask for the region to be inpainted.
In cases where only a color image is available, depth and
normals can be generated using the image-conditioned Or-
chid. We then generate the latents in the masked region,
using Orchid to iteratively denoise them, while using noise-
free latents encoded from the inputs for the unmasked re-
gion. This is similar to the approach proposed in RePaint
[10]. We provide qualitative results in Figure 12. We show
multiple inpainting results for the same input. We find that
Orchid is able to generate very realistic images, with differ-

ent semantically and geometrically consistent color, depth,
and normals for the masked regions. We compare this to
a baseline that first inpaints color (Stable-Diffusion XL-
inpainting [12]), then inpaints depth (Marigold-DC [15]),
and predicts normals using Marigold/Lotus [5, 7]. The
baseline performs significantly worse than Orchid, with
several geometric inconsistencies in the generated color im-
age (edges of objects or walls not intersecting, mismatch
in vanishing directions, etc.). It also appears more unreal-
istic. The baseline uses conditional prediction on the full
inpainted image for normals instead of inpainting them, as
there are no publicly available normal-inpainting diffusion
baselines.

5.5. 3D reconstruction from single view
The image-conditioned Orchid can jointly generate depth
and normals from an input image. These color, depth,
and surface normals can be used to reconstruct the 3D
scene using either Gaussian Splatting methods (3DGS [8],
2DGS [6]) or Poisson surface reconstruction. The novel-
view synthesis videos of reconstructions produced from the
generated color and geometry are provided on our web page
https://orchid3d.github.io.

6. Limitations and future work
Orchid is not without limitations. In terms of geometry pre-
diction accuracy, there is some scope for improvement on
surfaces with high frequency edges (eg.: grass, fur, or hair).
Some of these undesirably smooth predictions are apparent
in our qualitative results on images in-the-wild. Future work
can focus on further scaling unified appearance and geom-
etry diffusion models, incorporating more recent develop-
ments in color diffusion models such as DiTs and flow-
matching schedules. We also anticipate unified appearance-
geometry diffusion models to be applied to many down-
stream reconstruction settings that are beyond the scope of
our work: 3D scene completion, novel-view synthesis, text-
conditioned full 3D generation, 3D inpainting, etc.

https://orchid3d.github.io


Figure 3. Text conditioned color-depth-normal generation: We show two predictions from Orchid for each text prompt. We qualitatively
compare these to the alternative: generate color, depth and normals from a separate diffusion model for each. For this baseline, we use a
color-only LDM for color, and separate Marigold [7] models for depth and normals. When comparing results, please refer to our note on
depth map visualization (Section 5.1).



Figure 4. Text conditioned color-depth-normal generation: We show two predictions from Orchid for each text prompt. We com-
pare the geometry predicted by our model to Marigold (separate) depth and normal models [7], and to the DepthAnything-v2 + DSINE
combination[1, 17]. We find Orchid’s geometry predictions to be qualitatively better, especially on structures / people in the background
in the Corgi image. Color-conditional models may be inaccurate in such cases where geometry is ambiguous. When comparing results,
please refer to our note on depth map visualization (Section 5.1).



Figure 5. Comparison of GeoWizard [3] and Orchid for depth and normal estimation on in-the-wild input images. We can see that unlike
GeoWizard, results from Orchid have correct depth and normal predictions while still having sharp boundaries. Some of these areas have
been highlighted in the images shown above. In particular, Orchid shows less discontinuities in the Origami surfaces in both depth and
normals, and more accurate depth predictions of the hollow objects pictured (milk pitcher, coffee mug and saucer).



Figure 6. Comparison of GeoWizard [3] and Orchid on in-the-wild input images. Some areas with larger differences have been high-
lighted. In particular, we observe that high-frequency parts of the image can manifest themselves in noisy depth and normal predictions
by GeoWizard (highlights on the fruits, texture of the croissants), whereas Orchid correctly predicts smooth surfaces. In far-away layered
scenes we also observe that GeoWizard’s predictions do not cover background (mountain range example).



Figure 7. Comparison of Marigold [7] and Orchid on some in-the-wild input images. We use separate Marigold models to predict depth
and normals. Orchid’s joint predictions are better, especially for surface normals. Some notable differences are highlighted above.



Figure 8. Comparison of Marigold [7] and Orchid on some in-the-wild input images. We can clearly see that our model Orchid can
correctly predicts depth and surface normal of both far-away and nearby objects. Depth-maps from Orchid also has sharper and more
accurate boundaries near pixels with depth discontinuities (e.g. between narrow tree branches and sky). Some of these are highlighted in
the figure above.



Figure 9. Qualitative comparison of monocular depth prediction on KITTI [4] dataset between GeoWizard [3], Marigold [7] and Orchid.
Ground-truth depth (from lidar) are shown in the bottom row. Pixels without valid ground-truth depth are colored black. Orchid’s predic-
tions are significantly better, especially at longer ranges.



Figure 10. Comparison of monocular depth prediction results by GeoWizard [3], Marigold [7] and Orchid on NYUv2 [11], ETHD3D [14],
and ScanNet [2] datasets. Ground-truth depth are shown in the rightmost column. Pixels without valid ground-truth depth are colored
black. Our model Orchid has better depth predictions. Some notable differences are highlighted.



Figure 11. We compare single color image to surface-normal prediction methods of GeoWizard [3], Marigold [7] and Orchid on iBims [9],
and ScanNet [2], and NYUv2 [11] datasets. Ground-truth normal are shown in the rightmost column. Pixels without valid ground-truth
normal are colored black. Some notable differences are highlighted. Orchid’s normals are significantly better than baselines.



Figure 12. Joint color-depth-normal inpainting: Given color-depth-normal images with masked regions, our model inpaints them jointly.
Masked-out pixels are shown with green overlays on the input images. Inpainted outputs from Orchid look very realistic. For e.g., the edge
of the wall is a continuous straight line, unlike the inpainting generated by a color-inpainting SDXL model. The inpainted results are also
diverse (e.g. the table lamp, the shape of the canoe).



Figure 13. Joint color-depth-normal inpainting: (contd. from Figure 12) Our model inpaints color-depth-normals them jointly. Masked-
out pixels are shown with green overlays on the input image. Inpainted outputs from Orchid are much more realistic, including geometric
details such as the shape of the cradle. On the other hand, multimodal inpainting using existing baselines produce geometric artifacts and
unrealistic results. When comparing results, please refer to our note on depth map visualization (Section 5.1).
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