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1. Model Details
In this section, we provide the hyper-parameters of our net-
work. The hyper-parameters of the transform model and
entropy model are same as [9], with channel numbers C of
TCM blocks as 128. The hyper-parameters of our proposed
MSC Encoder and MSC Decoder are shown in Table. 1,
where nb denotes there is no bias in the convolution. The
hyper-parameters of DDT Encoder and DDT Decoder are
shown in Table. 2, which are based on [11] but with resid-
ual connection in DDT Decoder, where s2 denotes stride=2
in the convolution.

2. Training Details.
In this section, we provide more specific training details.
We use DIV2K image dataset [1] as our training dataset,
which contains 800 high-quality natural images with an av-
erage 2K resolution. To enhance resolution adaptability,
we implement data augmentation through bicubic down-
sampling on the images to half their original resolution.
During all stages of training, the training patches are ex-
tracted through randomized cropping of 256 × 256 pixel
regions from images. We use the Adam optimizer [6] in
each phase of the training, with the initial learning rate
set to 1 × 10−4. For the four stages of training (DDT
module training, MSC Encoder/Decoder training, codebook
warmup training, codebook training), 500, 100, 200, 1000
epochs are trained, respectively.

3. Implementation of the Compared Methods
The code links for all the methods compared are listed in
Table 4. For methods with published original RD data in
their paper, we directly use these data for comparison. For
the methods that expose the pre-trained model, we use their
official released pre-trained models to perform inference on
the test set to get comparative results. We use VTM-12.1
which is the official reference software to achieve VVC.
And for BPG, we utilize BPG v0.9.8 with the quantizer pa-

Table 1. Hyper-parameters of MSC Encoder and MSC Decoder.

MSC Encoder MSC Decoder

Conv: 1× 1 320 → 256 Conv: 1× 1 320 → 256 nb
GeLU GeLU

Conv: 1× 1 256 → 512 Conv: 1× 1 256 → 512 nb
GeLU GeLU

Conv: 1× 1 512 → 256 Conv: 1× 1 512 → 256 nb
GeLU GeLU

Conv: 1× 1 256 → 320 Conv: 1× 1 256 → 320 nb

Table 2. Hyper-parameters of DDT Encoder and DDT Decoder.

DDT Encoder DDT Decoder

Conv: 3× 3 3 → 32 s2 FC: 9 → 128

ReLU GeLU
Conv: 3× 3 32 → 64 s2 FC: 128 → 256

ReLU GeLU
GlobalAvgPooling FC: 256 → 3 ∗ 3 ∗ 1 ∗ 1

Concat
Conv: 1× 1 99 → 9

rameters. Thanks to the authors for sharing their codes and
pre-trained models, which are very helpful for our research.

4. Performance on Kodak dataset

We further show the performance on the dataset of Kodak
[7] in Fig. 1 and Table 3. The performance is similar to the
performance on CLIC professional dataset [10] which has
been shown in the main paper.
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Figure 1. RD-Curve on Kodak dataset. [Zoom in for best view]

Table 3. BD-rate results on Kodak dataset [7]. We set BPG [2] as the anchor in the calculation. The best results are shown in bold.

Method BD-Rate

Cheng (CVPR-20) [4] -25.76%
Xie (ACMMM-21) [12] -27.74%

He (CVPR-22) [5] -31.58%
Zou (CVPR-22) [13] -36.84%
Liu (CVPR-23) [9] -33.23%

Ours -35.21%

5. More Visual Results
More visual results of our methods compared with other
methods are shown in Figs. 2 and 3.



Table 4. Code or original data links of the compared methods.

Method Code Link

BPG [2] https://bellard.org/bpg/

VVC [3] https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/releases/VTM-12.1

Cheng(CVPR20) [4] https://github.com/ZhengxueCheng/Learned-Image-Compression-with-GMM-and-Attention

Xie(ACMMM21) [12] https://github.com/xyq7/InvCompress

He(CVPR22) [5] https://github.com/VincentChandelier/ELiC-ReImplemetation

Zou(CVPR22) [13] https://github.com/Googolxx/STF

Liu(CVPR23) [9] https://github.com/jmliu206/LIC_TCM

Li(ICLR24) [8] https://github.com/qingshi9974/ICLR2024-FTIC

Ground Truth
Bit Rate/ PSNR

BPG
0.163bpp/ 29.64dB

Liu (CVPR23)
0.121bpp/ 29.98dB

Ours
0.115bpp/ 30.03dBkodim19

Figure 2. Subjective results on kodim19 from Kodak [7].
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Figure 3. Subjective results on todd-quackenbush-222 from CLIC dataset [10].
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