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A1. Additional Details and Proof
We now add more details and proofs which we could not
put in the main paper because of the space constraints.

A1.1. Proof of Ground Depth Lemma 1
We reproduce the proof from [110] with our notations for
the sake of completeness of this work.

Proof. We first rewrite the pinhole projection Eq. (1) as:XY
Z

 = R−1(K−1

uv
1

 z −T). (9)

We now represent the ray shooting from the camera optical
center through each pixel as −→r (u, v, z). Using the matrix
A=(aij)=R−1K−1, and the vector B=(bi)=−R−1T,
we define the parametric ray as:

−→r (u, v, z) :


X = (a11u+ a12v + a13)z + b1

Y = (a21u+ a22v + a23)z + b2

Z = (a31u+ a32v + a33)z + b3

(10)

Moreover, the ground at a distance h can be described by
a plane, which is determined by the point (0, H, 0) in the
plane and the normal vector −→n = (0, 1, 0):

−→r ·−→n = H. (11)

Then, the ground depth is the intersection point between this
ray and the ground plane. Combining Eqs. (10) and (11),
the ground depth z of the pixel (u, v) is:

(a21u+ a22v + a23)z + b2 = H

=⇒ z =
H − b2

a21u+ a22v + a23
. (12)

A1.2. Proof of Lemma 2
We next derive Lemma 2 from Lemma 1 as follows.

Proof.

A=(aij) = R−1K−1=I−1

f 0 u0

0 f v0
0 0 1

−1

= I

 1
f 0 −u0

f

0 1
f

−v0
f

0 0 1

 ,

with rotation matrix R is identity I for forward cameras.
So, a21 =0, a22 =

1
f , a23 =

−v0
f . Substituting a21, a22, a23

in Eq. (2), we get Eq. (3).

A1.3. Pixel Shift with Ego Height Change.
We derive pixel shift with ego height change by backpro-
jecting a pixel p = (u, v, z) to 3D, applying extrinsics
change, and re-projecting to 2D. The new point p′ af-
ter height change of ∆H is given by p′ = K[R|t]K−1p
with usual notations. With height change inducing transla-
tion t = [0,∆H, 0]T and not changing rotations (R = I),
p′=(u, v + f∆H

z , z).

A1.4. Extension to Camera Not Parallel to Ground
Following Sec. 3.3 of GEDepth [110], we use the camera
pitch δ, and generalize Eq. (2) to obtain ground depth as

z =
H−b2cos δ−b3sin δ

[a21u+a22v+a23] cos δ+[a31u+a32v+a33] sin δ

=
H − b2 cosδ − b3sin δ

v−v0
f cos δ + sin δ

(13)

. Note that if camera pitch δ = 0, this reduces to the usual
form of Eq. (2) and Eq. (3) respectively. Also, Th. 1 has a
more general form with the pitch value, and remains valid
for majority of the pitch angle ranges.

A1.5. Extension to Not-flat Roads
For non-flat roads, we assume that the road is made of mul-
tiple flat ‘pieces‘ of roads each with its own slope and we
predict the slope of each pixel as in GEDepth [110]. To
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(a) GUP Net (b) CHARM3R

Figure 7. CARLA Val AP3D at different depths and IoU3D thresholds with GUP Net. CHARM3R shows biggest gains on IoU3D > 0.3
for [0, 30]m boxes. Note that 30m to 60m curves are present, but their performance is near zero, making them hard to see.

predict slope δ̂ of each pixel, we first define a set of N dis-
crete slopes: {τi, i = 1, ..., N}. We compute each pixel
slope by linearly combining the discrete slopes with the pre-
dicted probability distribution {p̂i ∈ [0, 1],

∑
ip̂i = 1} over

N slopes δ̂ =
∑

i p̂iτi. We train the network to minimize
the total loss: Ltotal = Ldet +λslopeLslope(δ, δ̂), where Ldet
are the detection losses, and Lslope is the slope classifica-
tion loss. We next substitute the predicted slope in Eq. (13).
We do not run this experiment since planar ground is rea-
sonable assumption for most driving scenarios within some
distance.

A1.6. Theorem 1 in Slopy Ground
Theorem 1 remains valid in slopy grounds. The key is the
extrapolation behaviour of detectors, and not the ground
depth itself.

Proof. Using Eq. (13), the new depth gẑ∆H is

gẑ∆H =
H +∆H − b2 cos δ − b3 sin δ

vb+
f∆H

z −v0
f cos δ+sin δ

≈ H +∆H − b2 cos δ − b3 sin δ
vb−v0

f cos δ+sin δ

=
H − b2 cos δ − b3 sin δ

vb−v0
f cos δ+sin δ

+
∆H

vb−v0
f cos δ+sin δ

= gẑ0 +
∆H

vb−v0
f cos δ+sin δ

≈ z + η +
f∆H

(vb−v0) cos δ+f sin δ

=⇒ gẑ∆H − z ≈ η +
f∆H

(vb−v0) cos δ+f sin δ
,

assuming the depth gẑ0 at train height ∆H = 0 is the GT
depth z added by a normal random variable η(0, σ2) [42].
Taking expectation on both sides, mean depth error is

E
(
gẑ∆H − z

)
≈

(
1

(vb−v0) cos δ+f sin δ

)
f∆H. (14)

Thus, this theorem remains valid for positive slopes and

negative slopes > − arctan

(
vb−v0

f

)
. The valid slope

δ ∈
(
− arctan

(
vb−v0

f

)
, π
2

]
radians. As an example,

for bottom-most point v0 = h
2 and focal length f = h

2 , the
valid delta range δ ∈

(
−π

4 ,
π
2

]
radians. Since almost all

real datasets have slopes |δ|<10 degrees, the extrapolation
behavior remains consistent as Theorem 1.

A1.7. Unrealistic Assumptions
Flat ground assumption does not hold in real-world
datasets. Real datasets like KITTI and nuScenes are mostly
flat-ground datasets. Recent methods such as MonoGround
[79] and Homography Loss [26] leverage this assumption.
CHARM3R makes a crucial first attempt to address the
extrapolation problem within this relevant and prevalent
setting.
Over-idealized Theorem 2. Car has constant surface
depth. Theorem 2 relies on Sec. 3.2 and Fig. 3 of [21],
that proves that all depth estimators are regression mod-
els. The Mono3D task and previous works: DEVIANT [41]
(our baseline) and MonoDETR predict depth at the car cen-
ter, not its surface. Thus, Theorem 2 addresses regression
for this standard center-based depth prediction.

A1.8. Error Trends For Far Objects
Note that the error trends of regression-based depth and
ground-based depth do not completely cancel for far ob-
jects. However, the baseline Mono3D performance is al-
ready notably poor for far objects. Fig. 7 confirms that both
regression-based baseline and CHARM3R performance are
bad beyond > 30m range.

A2. Additional Experiments
We now provide additional details and results of the exper-
iments evaluating CHARM3R’s performance.



(a) AP3D 70 [%] comparison. (b) AP3D 50 [%] comparison. (c) MDE comparison.

Figure 8. CARLA Val Results with GUP Net detector after augmentation of [38]. Training a detector with both ∆H = −0.70m and
∆H = 0m images produces better results at ∆H = −0.70m and ∆H = 0m, but fails at unseen height images ∆H = +0.76m.
CHARM3R outperforms all baselines, especially at unseen bigger height changes. All methods except Oracle are trained on car height
and tested on all heights.

(a) AP3D 70 [%] comparison. (b) AP3D 50 [%] comparison. (c) MDE comparison.

Figure 9. CARLA Val Results with DEVIANT detector. CHARM3R outperforms all baselines, especially at bigger height changes. All
methods except Oracle are trained on car height and tested on all heights. Results of inference on height changes of −0.70, 0 and 0.76
meters are in Tab. 2.

Loss Function. CHARM3R uses the same losses as base-
lines. CHARM3R’s final depth estimate, being a fusion
of regression and ground-based depth, does not need loss
changes.

A2.1. CARLA Val Results
We first analyze the results on the synthetic CARLA dataset
further.
AP at different distances and thresholds. We next com-
pare the AP3D of the baseline GUP Net and CHARM3R
in Fig. 7 at different distances in meters and IoU3D match-
ing criteria of 0.1 − 0.7 as in [41]. Fig. 7 shows that
CHARM3R is effective over GUP Net at all depths and
higher IoU3D thresholds. CHARM3R shows biggest gains
on IoU3D > 0.3 for [0, 30]m boxes.
Comparison with Augmentation-Methods. Sec. 1 of the
paper says that the augmentation strategy falls short when
the target height is OOD. We show this in Fig. 8. Since
authors of [38] do not release the NVS code, we use the
ground truth images from height change ∆H = −0.70m in
training. Fig. 8 confirms that augmentation also improves
the performance on ∆H = −0.70m and ∆H = 0m, but
again falls short on unseen ego heights ∆H = +0.76m.

On the other hand, CHARM3R (even though trained on
∆H = −0.70m) outperforms such augmentation strategy
at unseen ego heights ∆H = +0.76m. This shows the
complementary nature of CHARM3R over augmentation
strategies.
Reproducibility. We ensure reproducibility of our results
by repeating our experiments for 3 random seeds. We
choose the final epoch as our checkpoint in all our experi-
ments as [41, 42]. Tab. 5 shows the results with these seeds.
CHARM3R outperforms the baseline GUP Net in both me-
dian and average cases.
Results with DEVIANT. We next additionally plot the ro-
bustness of CHARM3R with other methods on the DE-
VIANT detector [41] in Fig. 9 The figure confirms that
CHARM3R works even with DEVIANT and produces
SoTA robustness to unseen ego heights.

A2.2. nuScenes −� CODa Val Results
To test our claims further in real-life, we use two real
datasets: the nuScenes dataset [7] and the recently released
CODa [115] datasets. nuScenes has ego camera at height
1.51m above the ground, while the CODa is a robotics
dataset with ego camera at a height of 0.75m above the



3D Detector Seed

−
� / ∆H (m)−�

AP3D 70 [%] ( −�) AP3D 50 [%] ( −�) MDE (m) [≈ 0]
−0.70 0 +0.76 −0.70 0 +0.76 −0.70 0 +0.76

GUP Net [62]

111 12.24 55.98 7.53 44.14 76.37 41.32 +0.48 +0.00 −0.64
444 9.46 53.82 7.23 41.66 76.47 40.97 +0.53 +0.03 −0.63
222 10.35 52.94 10.79 41.67 75.80 46.45 +0.53 +0.01 −0.57
Average 10.68 54.25 8.52 42.49 76.21 43.58 +0.51 +0.01 −0.61

+ CHARM3R

111 19.99 58.16 29.96 54.15 74.10 64.27 +0.09 +0.00 −0.03
444 19.45 55.68 27.33 53.40 74.47 61.98 +0.07 +0.05 −0.02
222 17.41 53.57 27.77 54.30 74.83 64.42 +0.12 +0.01 −0.09
Average 18.95 55.80 28.35 53.95 74.47 63.56 +0.09 +0.02 −0.05

Oracle − 70.96 53.82 62.25 83.88 76.47 83.96 +0.03 +0.03 +0.03

Table 5. Reproducibility Results. CHARM3R outperforms all other baselines on CARLA Val split, especially at bigger unseen ego
heights in both median (Seed=444) and average cases. All except Oracle are trained on car height ∆H = 0m and tested on bot to truck
height data. [Key: Best]

(a) CODa Car (b) CODa Pedestrian

Figure 10. CODa Val AP3D at different depths and IoU3D thresholds with GUP Net trained on nuScenes. CHARM3R shows biggest
gains on IoU3D < 0.3 for [0, 30]m boxes.

Val Ego Ht (m) #Images Car (k) Ped (k)

nuScenes 1.51 6,019 18 7
CODa 0.75 4,176 4 86

Table 6. Dataset statistics. nuScenes Val has more Cars compared
to Pedestrians, while CODa Val has more Pedestrians than Cars.

ground. Tab. 6 shows the statistics of these two datasets.
This experiment uses the following data split:

• nuScenes Val Split. This split [7] contains 28,130 train-
ing and 6,019 validation images from the front camera as
[41].

• CODa Val Split. This split [115] contains 19,511 training
and 4,176 validation images. We only use this split for
testing.
We train the GUP Net detector with 10 nuScenes classes

and report the results with the KITTI metrics on both
nuScenes val and CODa Val splits.
Main Results. We report the main results in Tab. 7 paper.
The results of Tab. 7 shows gains on both Cars and Pedes-
trians classes of CODa val dataset. The performance is very
low, which we believe is because of the domain gap be-
tween nuScenes and CODa datasets. These results further

confirm our observations that unlike 2D detection, general-
ization across unseen datasets remains a big problem in the
Mono3D task.
AP at different distances and thresholds. To further ana-
lyze the performance, we next plot the AP3D of the baseline
GUP Net and CHARM3R in Fig. 10 at different distances
in meters and IoU3D matching criteria of 0.1 − 0.5 as in
[41]. Fig. 10 shows that CHARM3R is effective over GUP
Net at all depths and lower IoU3D thresholds. CHARM3R
shows biggest gains on IoU3D < 0.3 for [0, 30]m boxes.
The gains are more on the Pedestrian class on CODa since
CODa captures UT Austin campus scenes, and therefore,
has more pedestrians compared to cars. nuScenes captures
outdoor driving scenes in Boston and Singapore, and there-
fore, has more cars compared to pedestrians. We describe
the statistics of these two datasets in Tab. 6.

A2.3. Qualitative Results.
CARLA. We now show some qualitative results of models
trained on CARLA Val split from car height (∆H = 0m)
and tested on truck height (∆H = +0.76m) in Fig. 11.
We depict the predictions of CHARM3R in image view on
the left, the predictions of CHARM3R, the baseline GUP



3D Detector Method Car AP3D 50 [%] ( −�) Ped AP3D 30 [%] ( −�)
CODa nuScenes CODa nuScenes

GUP Net [62]

Source 0.02 18.42 0.01 2.93
UniDrive [47] 0.02 18.42 0.01 2.93
UniDrive++[47] 0.03 18.42 0.02 2.93
CHARM3R 0.30 14.80 0.05 1.26
Oracle 28.56 18.42 30.31 2.93

Table 7. nuScenes to CODa Val Results. CHARM3R outperforms all baselines, especially at unseen height changes. [Key: Best, Second
Best, Ped= Pedestrians]

Net [62], and GT boxes in BEV on the right. In gen-
eral, CHARM3R detects objects more accurately than GUP
Net [62], making CHARM3R more robust to camera height
changes. The regression-based baseline GUP Net mostly
underestimates the depth of 3D boxes with positive ego
height changes, which qualitatively justifies the claims of
Theorem 2.
CODa. We now show some qualitative results of models
trained on CODa Val split in Fig. 12. As before, we de-
pict the predictions of CHARM3R in image view image
view on the left, the predictions of CHARM3R, the baseline
GUP Net [62], and GT boxes in BEV on the right. In gen-
eral, CHARM3R detects objects more accurately than the
baseline GUP Net [62], making CHARM3R more robust to
camera height changes. Also, considerably less number of
boxes are detected in the cross-dataset evaluation i.e. on
CODa Val. We believe this happens because of the domain
shift.



Figure 11. CARLA Val Qualitative Results. CHARM3R detects objects more accurately than GUP Net [62], making CHARM3R more
robust to camera height changes. The regression-based baseline GUP Net mostly underestimates the depth which qualitatively justifies the
claims of Theorem 2. All methods are trained on CARLA images at car height ∆H = 0m and evaluated on ∆H = +0.76m. [Key: Cars
of CHARM3R. ; Cars of GUP Net, and Ground Truth in BEV.



Figure 12. CODa Val Qualitative Results. CHARM3R detects objects more accurately than GUP Net [62], making CHARM3R more
robust to camera height changes. All methods are trained on nuScenes dataset and evaluated on CODa dataset. [Key: Cars and Pedestrian
of CHARM3R. ; all classes of GUP Net, and Ground Truth in BEV.


