
Modeling Saliency Dataset Bias - Appendix

A. Full results on the MIT/Tuebingen Saliency
Benchmark

In Tab. 3, 4 and 5 we list the full evaluation on
the MIT/Tuebingen Saliency Benchmark for MIT300,
CAT2000 and COCO-Freeview, including the metrics that
we had to skip in the main text due to space reasons.

B. Comparison with more saliency models
In Table 6 we extend the results table from the main paper
with four additional saliency models, which are not DNN
based but take inspiration from neuroscience and psychol-
ogy: Itti & Koch [24] (using the implementation of [20]),
RARE2012 [51], GBVS [20] and CovSal [18]. From those
models, on most datasets, CovSal performs best with the ex-
ception GBVS performs substantially better. Interestingly,
on CAT2000, CovSal and GBVS perform substantially bet-
ter than the deep learning model EML-Net, and RARE2012
performs more similarly, but still better than EML-Net.

C. Bias parameter sensitivity analysis:
In Figure 10, we perform a bias parameter sensitivity analy-
sis: for the our foll model trained jointly on all five datasets,
we evaluate each dataset in six different settings: once
with each set of dataset bias parameters, and once with
the averaged dataset bias parameters. We find that using
dataset parameters from a different dataset usually results
in a substantial performance drop. This includes the aver-
age dataset parameters, however they are usually among the
best “wrong” dataset parameters and result in best average
performance across datasets. DAEMONS seems to be most
different from all other datasets: its dataset parameters re-
sult in worst performance on all other datasets. Overall, this
analysis shows that the dataset bias parameters control im-
portant mechanisms and setting them right can make a large
difference in performance.

D. Generalization and adaptation on new
datasets

We test our model on three additional datasets. We use the
full joint model trained on all five datasets with dataset bias
parameters per dataset. The new datasets are tested both in
the generalization setting (averaging the dataset bias param-
eters including the centerbiases) and adaptation (finetuning
the dataset bias parameters on the new dataset).
Kienzle dataset: The Kienzle dataset [29] consists of
only 200 images which are random crops of grayscale im-
ages of natural scenes, making it an challening testcase. On
this dataset, genrealization already results in substantially
improved performance compared to earlier models (8% in

AUC). Adapting the dataset biase parameters to the Kienzle
dataset improves performance further (Tab. 7). In Appendix
D we also test the Toronto dataset [5].

Toronto dataset: In Table 8, we apply our model to the
Toronto dataset [5]. The Toronto dataset consists of 120
images and hence is too small for training full deep learn-
ing models which makes it an interesting test case. On
the Toronto dataset, generalization results in improved per-
formance compared to earlier models. Adapting the few
dataset parameters to the Toronto dataset improves perfor-
mance further. Overall, the performance boost, however, is
not as large as on the Kienzle dataset. This shows that the
Toronto dataset is closer to common saliency datasets and
emphasizes the need for new challenging saliency datasets.

SALICON dataset: We also tested our model on the
SALICON dataset. To that end, since our default models
all are pretrained on SALICON, we trained a new version
of the full model without previous pretraining on SALI-
CON and then again tested generalization and adaptation,
comparing to full training on SALICON (Tab. 9). We see
that the achievable information gain is 0.31 bit/fix. The
model trained on our combined dataset (without pretraining
on SALICON) and applied with average dataset parameters
performs very bad, even slightly worse than the center bias
alone. However, adapting the dataset parameters to SAL-
ICON results in a performance of 0.26bit/fix, closing 85%
of the generalization gap. This is in line with the results
from our leave-one-dataset-out generalization test. In the
case of SALICON the dataset parameters seem to account
for even more of the generalization gap. This might be due
to the extremely different experimental setup of SALICON
(e.g., mouse traces instead of eye movements, mechanical
turk instead of controlled lab environment).

E. Considerations for good centerbias models

On the full datasets, we usually use a centerbias model
which is a KDE over all fixations with an additional uniform
regularization component. However, in low-data settings,
this approach most likely does not average over enough im-
ages to result in a good prediction for new images and hence
we evaluated different options:
• The modeling approach of the full dataset: a KDE

with uniform regularization. Bandwidth and regulariza-
tion weight are selected for maximum likelihood in a
leave-one-image-out crossvalidation setting on the train-
ing data.

• A simple parametric model consisting of a centered Gaus-
sian with a uniform regularization component (this is
quite close to what many other models use, e.g. [15]. Hor-
izontal and vertical variance of the Gaussian as well as the
weight of the uniform component are selected to result in
maximum likelihood on the training data



CLIP

DINOv2

CLIP

DINOv2

CLIP

DINOv2

CLIP

DINOv2

averaging

weights

priority

scaling

Multiscale Feature Extraction

5 px/dva

30 px/dva

scales of visual size

5 different scales

128 pixel

1024 pixel

scales of size

relative to image

5 different scales

Readout 
Network

few layers of

1x1 convolutions


+.

p

centerbias

weight

centerbias

Gauss 
blur

.

softmax

dataset specific

parameters

dataset agnostic

parameters

input image

predicted 
fixation density

Figure 9. Model Architecture: An input image is rescaled into different resolutions, some defined in total image size in pixels, others in
pixels per degree of visual angle. For each image, deep activations from CLIP and DINOv2 encoders are extracted and averaged across
scales, from which a priority map is decoded which is then postprocessed with Blur, priority scaling and centerbias

Table 3. MIT300 Benchmark

Model IG AUC sAUC NSS CC KLDiv SIM

SalTR - - 0.7900 2.4500 0.8000 0.3600 0.5900
TempSAL - 0.8626 0.7483 2.0092 0.7181 0.5509 0.6202
DeepGaze II 0.9505 0.8759 0.7840 2.3689 0.7851 0.4149 0.6746
EML-NET - 0.8762 0.7469 2.4876 0.7893 0.8439 0.6756
SalFBNet 0.8194 0.8769 0.7858 2.4702 0.8141 0.4151 0.6933
UNISAL 0.9505 0.8772 0.7840 2.3689 0.7851 0.4149 0.6746
GSGNet - 0.8780 0.7880 2.4230 0.8110 0.4100 0.6900
Clueify - 0.8811 0.7651 1.4946 0.5750 0.8885 0.4773
DeepGaze IIE 1.0715 0.8829 0.7942 2.5265 0.8242 0.3474 0.6993
Ours (generalized) 1.1975 0.8926 0.8139 2.6697 0.8665 0.2791 0.7311
Ours (adapted) 1.2355 0.8936 0.8149 2.7229 0.8795 0.2588 0.7478
Ours (full joint training) 1.2463 0.8942 0.8159 2.7439 0.8832 0.2540 0.7518

Interobserver consistency 1.3239 0.8982 - 2.8481 - - -

Table 4. CAT2000 Benchmark

Model IG AUC sAUC NSS CC KLDiv SIM

TempSAL - 0.8444 0.6378 1.7037 0.6607 0.6282 0.6173
SalFBNet - 0.8549 0.6330 1.8791 0.7028 1.2004 0.6426
ICF -0.0229 0.8561 0.6187 1.9588 0.7791 0.4448 0.6697
UNISAL 0.0321 0.8604 0.6684 1.9359 0.7399 0.4703 0.6633
DeepGaze II 0.0839 0.8640 0.6498 1.9619 0.7950 0.3815 0.6865
DeepGaze IIE 0.1893 0.8692 0.6677 2.1122 0.8189 0.3448 0.7060
Ours (generalized) 0.2031 0.8712 0.6889 2.1460 0.8176 0.3397 0.7200
Ours (adapted) 0.4333 0.8806 0.6900 2.4591 0.8997 0.2430 0.7726
Ours (full joint training) 0.4932 0.8847 0.7002 2.5127 0.9155 0.2098 0.7891

Interobserver consistency 0.4730 0.8840 0.6930 2.4878 - - -



Table 5. COCO Freeview Benchmark

Model IG AUC sAUC NSS CC KLDiv SIM

TempSAL - 0.8567 0.7076 1.7508 0.6473 0.7026 0.5626
DeepGaze II 0.6636 0.8699 0.7399 2.0028 0.6909 0.5858 0.6043
SalFBNet - 0.8722 0.7099 2.0275 0.7088 0.8623 0.6178
UNISAL 0.7494 0.8774 0.7585 2.0954 0.7155 0.5515 0.6203
DeepGaze IIE 0.8596 0.8825 0.7669 2.2558 0.7563 0.4863 0.6447
Ours (generalized) 0.9475 0.8896 0.7855 2.3782 0.7907 0.4331 0.6695
Ours (adapted) 1.0114 0.8932 0.7884 2.4413 0.8048 0.4078 0.6805
Ours (full joint training) 1.0727 0.8968 0.7951 2.5251 0.8258 0.3743 0.6882

Interobserver consistency 0.8673 0.8829 - 2.2837 - - -

Table 6. Performance of our model and previous state-of-the-art models. Best performance in is indicated in bold, second best is underlined.
“generalization” refers to training on the respective four other datasets and evaluation with average dataset biases, “adaptation” refers to
training on the respective four other datasets and evaluation after adapting the dataset bias parameters to the target dataset. Models are
sorted by average AUC.

Model MIT1003 CAT2000 COCO Freeview DAEMONS FIGRIM average
IG AUC IG AUC IG AUC IG AUC IG AUC IG AUC

Itti & Koch - 0.757 - 0.759 - 0.702 - 0.699 - 0.766 - 0.736
RARE2012 - 0.772 - 0.777 - 0.771 - 0.706 - 0.787 - 0.762
GBVS - 0.803 - 0.802 - 0.796 - 0.710 - 0.821 - 0.786
CovSal - 0.809 - 0.847 - 0.803 - 0.679 - 0.835 - 0.795
EML-NET - 0.842 - 0.766 - 0.817 - 0.766 - 0.832 - 0.805
SalFBNet - 0.883 - 0.858 - 0.868 - 0.774 - 0.886 - 0.854
UNISAL 1.006 0.887 0.099 0.865 0.712 0.873 0.712 0.809 0.771 0.892 0.660 0.865
our model, generalization 1.172 0.902 0.249 0.878 0.889 0.886 0.538 0.800 0.883 0.905 0.746 0.874
DeepGaze IIE 1.113 0.894 0.315 0.878 0.846 0.881 1.006 0.822 0.877 0.899 0.831 0.875
our model w/o biases, generalization 1.123 0.898 0.259 0.879 0.897 0.887 0.625 0.808 0.954 0.907 0.772 0.876
our model, adaptation 1.217 0.904 0.469 0.887 0.965 0.890 1.149 0.840 1.059 0.911 0.972 0.886
our model, trained on all 1.240 0.905 0.522 0.891 1.031 0.895 1.258 0.848 1.117 0.915 1.034 0.891
our model, trained per dataset 1.217 0.903 0.535 0.891 1.040 0.895 1.272 0.850 1.105 0.914 1.034 0.891

Gold Standard (subject-LOO) 1.213 0.901 0.494 0.885 0.869 0.880 1.347 0.850 1.054 0.907 0.995 0.885
Gold Standard (upper bound) 1.829 0.945 0.873 0.920 1.511 0.935 1.722 0.899 1.642 0.947 1.515 0.929

• A combination of the two previous options: A mixture
of a KDE, a centered Gaussian and a uniform compo-
nent. Horizontal and vertical bandwidth of the Gaussian
are computed on the training fixations. The bandwidth of
the KDE and the mixture weights are selected for maxi-
mum likelihood in a leave-one-image-out crossvalidation
setting on the training data.

For each of our five datasets and random subsets thereof,
we fit the different models and evaluate on the corre-
sponding validation splits. The results are visible in
Fig. 12. We see that the first option (“KDE”) sometimes
results in bad scores if little data is available. The sec-
ond option (“Gaussian + uniform”) performs much better
in these cases but fails to reach the performance of the
nonparametric centerbias with more data. The third op-
tion (“KDE+Gaussian+uniform”) combines the advantages
of both: reasonable performance already with a few im-
ages and good convergence with more data. Interestingly,
whether the KDE or Gaussian+uniform performs better for

low data is different from dataset to dataset. This is why we
select the third option for our low-data adaptation experi-
ments.

These results also serve to demonstrate that modeling the
centerbias as a simple Gaussian is not sufficient for many
datasets and can result in substantial performance penalties
(see also Fig. 13).

F. Multiscale ablation

We evaluated the benefits of our multiscale feature extrac-
tion state in an ablation study where we trained the jointly
trained model in different settings: we varied whether the
model used absolute, relative or both scales. We also varied
the numbers of scale per type and whether we added scales
starting with the low or high resolutions. We find that the
large scales are crucial for performance (Fig. 11a, b). We
also evaluated computational demand via epoch times and
find acceptable performance tradeoffs with fewer but large,
preferably relative, scales, resulting in a few percent perfor-



Table 7. Kienzle Dataset

Model IG AUC NSS CC KLDiv

EML-NET - 0.677 0.648 0.314 1.058
UNISAL 0.510 0.817 1.770 0.648 0.628
DeepGaze IIE 0.662 0.819 2.048 0.692 0.549
our model, average parameters 1.499 0.895 2.596 0.879 0.284
our model, fine-tuned dataset parameters 1.509 0.896 2.603 0.879 0.281

Table 8. Toronto Dataset

Model IG AUC NSS CC KLDiv

EML-NET - 0.847 2.098 0.719 2.734
UNISAL 0.846 0.885 2.360 0.812 0.396
DeepGaze IIE 1.004 0.892 2.572 0.859 0.330
our model, average parameters 1.080 0.896 2.629 0.879 0.284
our model, fine-tuned dataset parameters 1.092 0.897 2.640 0.879 0.281

Table 9. SALICON Dataset

Model IG

Our model, average parameters -0.03
Our model, adapted parameters 0.26
Our model, trained on SALICON 0.31

mance drop (Fig. 11c).
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Figure 10. Parameter sensitivity analysis: We evaluate the full
model trained jointly across all five dataset on each dataset with
the dataset parameters from all datasets and average dataset pa-
rameters.

G. The joint model excels at hard images
In Figure 15, we compare the models on a per-image-level.
We quantify model performance in terms of the informa-
tion gain difference to the gold standard, i.e., we measure an
prediction error: how much explainable information gain is
missed by the the models. This reveals that the joint model
profits most from those images where the individual mod-
els make the largest prediction error, which means that it
performs better on hard images.

We now analyze model predictions on specific im-
ages. From each dataset, we select those images where
the jointly trained model outperforms the individually
trained models most and visualize the model predic-
tions. In addition, we also visualize the pixelwise infor-
mation gain difference [35]: For each pixel, we visual-
ize pgold (log pjoint − log pindividual). This visualization tech-
nique results in highlighting those image areas where pre-
dictions differ in a relevant way and makes comparing
model predictions more intuitive. For more details on pix-
elwise information gain, see [35].

The resulting images are shown in Figure 16. We see
that the joint model often is better at detecting the exact
outline of salient objects (MIT1003, first image), at pre-
dicting which one of two salient objects is more impor-
tant (CAT2000, first image, where more salience is moved
to the bird compared to the structure in the foreground;
also MIT1003, third image, where the map fragements in
the center are downweighted and the peripheral text is up-
weighted). Also, it appears that the joint model is better
at capturing the interplay between local image salience and
centerbias, sometimes increasing saliency in the periphery
(MIT1003, third image) and sometimes increasing saliency
in the center (CAT2000, first image and FIGRIM, first im-
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age). Since the model architecture can be seen as comput-
ing a posterior from the local image salience as likelihood
and the centerbias as prior, this suggests that the joint model
manages to extract more evidence from the image features,
resulting in overwriting the centerbias more often.

H. Details about the model architecture

Mathematical model formulation Given an image I , we
denote with Rk,j(I) the rescaled images (k = 1, 2 differen-
tiates between the two scale type “absolute” and “relative”,
and j = 1 . . . 5 indexes the specific resolutions). We extract
deep features Fk,j(I) = F (Rk,j(I)) with our backbone F .
Given weights λk,j ≥ 0,

∑
k,j λk,j = 1 we then com-

pute the averaged deep features F̄ =
∑

k,j λk,(R
′(Fk,j)),

where R′ indicates a rescaling operation that rescales all
deep features to the same resolution. From F̄ , the readout
network RN computes a spatial priority map S = RN(F̄ ),
which is postprocessed with the priority scaling p, the Gauss
blur size σ, the center bias distribution pcb(x | I) and the
center bias weight β to yield the prediction p̂(x | I) =
softmax(Gσ(p · S) + β log pcb(x | I)).
Multiscale resolutions We use a total of 10 scales in our
multiscale feature extraction. Five scales are resizing the
input image to match a certain resolution in terms of pixel
per degree of visual angle and use resolutions of 5, 10, 17.5,
24 and 30 px/dva. The other five scales are resizing the input
image to match a certain image width or height (whatever

is larger) in terms of pixel and uses sizes of 128, 256, 512,
768 and 1024 pixels. Before averaging extracted features
across scales, we rescale all of them to 1/8th of the original
image resolution to achieve matching sizes. The rescaling
operation uses bilinear interpolation.

The scales were chosen to include 17.5 px/dva which
is the scale of DeepGaze IIE (MIT1003 has 35px/dva, and
DeepGaze IIE downsamples by a factor of 2). From there on
we added larger scales until we ran into computational con-
straints, and smaller scales to the point that we still consid-
ered sensible. For the relative scales, the approach was sim-
ilar: 512 pixel corresponds to the resolution that DeepGaze
IIE uses internally on its training dataset, from there on we
added smaller and larger scales. In an Ablation (see Ap-
pendix F), we found that including the larger scales is cru-
cial for improving prediction performance.
CLIP and DINO We use the implementations and check-
points from https://github.com/openai/CLIP
and https://github.com/facebookresearch/
dinov2. In the case of CLIP, we use the ResNet50x64
architecture and extract the layer layer4.2.conv2. In
the case of DINOv2, we use the ViTB14 architecture and
extract the layers blocks.6 and blocks.10. In total,
this gives us 2560. To regain spatial feature maps from
the ViT tokens, we rearange the tokens from the deep lay-
ers back into their original layout in the input image. De-
pending on the image size, we might have differently sized
feature maps (for the convolutional CLIP implementation)

https://github.com/openai/CLIP
https://github.com/facebookresearch/dinov2
https://github.com/facebookresearch/dinov2
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tered Gaussian often misses a lot of structure present in the aver-
age spatial fixation distribution across images.

or different numbers of tokens (for the transformer based
DINOv2 implementation). This is not a problem since we
don’t require the original readout layers and can simply re-
move them. The extracted deep layers have been choosen
with a random search on MIT1003. Interestingly, we found
that for CLIP, the convolutional backbones worked better,
while in the case of DINOv2, the ViT based backbones re-
sulted in higher performance. Hence we use the ResNet
implementation of CLIP and the ViT implementation of DI-
NOv2.
Readout Network The readout network consists of five
layers of 1x1 convolutions, processing the 2560 feature
maps from the multiscale encoder. The five layers of the
readout network produce 8, 16, 1, 128, and 1 feature maps
respectively. Each layer is prepended by a layer norm and
uses softplus as activation function.
Gaussian blur The output of the readout network is up-
scaled to 1/2 of the original image resolution before the
Gaussian blurring is applied, which is specified in degree
of visual angle.

I. Details about the datasets
All datasets except for DAEMONS are accessed via
their wrapper in the pysaliency python library https:
//github.com/matthias-k/pysaliency. Since
DAEMONS is a very new dataset, it’s not yet included
in pysaliency and we had to write our own pysaliency
wrapper. MIT1003, CAT2000 and FIGRIM don’t come
with official validation splits, here we create our own using
pysaliency.filter_datasets.train,validation_fold(stimuli,
fixations, crossval_folds=10,
test_folds=0, val_folds=1).
For CAT2000, we furthermore specify
stratified_attributes=[’category’] to
guarantee a uniform distribution of the image categories
over splits.

J. Details about the training
We use the Adam optimizer for optimizing models together
with a learning rate schedule consisting of decays of the
learning rate by a factor of 10. For each dataset, initial
learning rate and points for first and second decay have been
selected with a random search. Third and fourth decay al-
ways happen after one additional epoch, after the fourth de-
cay training is stopped. The specific learning rate schedules
are given in Table 10.

Pretraining on the SALICON dataset [26], uses the
mouse data from the 2017 SALICON edition. To save com-
pute, for the pretraining we use only one scale with 1024
pixels.

K. Baseline models
We include two baseline models to put model performances
into perspective: the centerbias model is a KDE which, for
each image, uses the fixation locations from all other im-
ages in the dataset. The centerbias quantifies how well fixa-
tions can be predicted without taking image content into ac-
count. Bandwidth and a uniform regularization component
have been selected for maximum likelihood using leave-
one-image-out crossvalidation. For each image in the com-
bined dataset, we use the centerbias prediction from the re-
spective dataset centerbias.

The gold standard model estimates inter-observer con-
sistency. As suggested by [32], we use a mixture of a uni-
form component, the centerbias model and a KDE. The lat-
ter uses, for each observer, the fixations from all other ob-
servers on the same image. Mixture weights and KDE band-
width have been chosen for maximum likelihood, where
the parameters are fitted for each image individually to
make sure that the prediction is as good as possible per im-
age. Unless otherwise indicated, we specify the gold stan-
dard performance as the leave-on-subject-out crossvalida-
tion performance. For some figures, we specify the gold

https://github.com/matthias-k/pysaliency
https://github.com/matthias-k/pysaliency
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standard as a range ranging from the leave-on-subject-out
crossvalidation performance up to the performance when
including all image fixations in the KDE but keeping the
parameters fitted in the crossvalidation. The first is essen-
tially a lower bound on inter-observer consistency, the latter
is an upper bound.

L. CAT2000 artifacts

We noticed that the CAT2000 dataset contains an artifact:
for some scanpaths, all fixations are all clustered in a small
image area far from the image center. All these scanpaths
are from the same subject, indicating eye tracking problems
with this subject. For this reason, we excluded all these
scanpaths from the dataset by removing all scanpaths from
subject number 20 with a mean y position of larger than
950 pixels. Extensive visual tests confirmed that this indeed
removes those and only those scanpaths (see Figure 17 for
example cases)

M. Assets

Our models where implemented in python using pytorch
[46]. Model evaluations and saliency metrics were using the
public pysaliency toolbox (github.com/matthias-
k/pysaliency, MIT license). All datasets except
for DAEMONS were used via their pysaliency wrapper.
The models were used via their implementations from

https://github.com/rdroste/unisal (Apache
2 license), https://github.com/SenJia/EML-
NET-Saliency, https://github.com/gqding/
SalFBNet and https://github.com/matthias-
k/deepgaze. Also used were scipy [66] and numpy [21]
for computations, pandas [50] for statistics and data han-
dling as well as matplotlib [23] and seaborn [68] for plot-
ting.

N. Compute Ressources

All main experiments where conducted on A100s. Model
trainings on individual datasets took around 6–24 hours,
trainings on the combined dataset around 3-4 days. The
learning rate random search was conducted using an ear-
lier model version on 2080Ti GPUs. Around 500 random
search iterations were performed taking on average 5 hours
each.
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