
RadarSplat: Radar Gaussian Splatting for High-Fidelity Data Synthesis and 3D
Reconstruction of Autonomous Driving Scenes

Supplementary Material

In the supplementary material, we first cover the radar
sensing primer, radar spectral leakage modeling, and details
of the radar used in this study (Sec. 1). Next, we provide
additional method details and illustrations for noise detec-
tion, denoising, and occupancy grid mapping (Sec. 2). In
Sec. 3, we elaborate on RadarSplat training and provide an
overview figure. Sec. 4 presents evaluation details and ad-
ditional quantitative and qualitative results. Finally, we dis-
cuss the limitations of our current method (Sec. 5).

1. Radar Sensing Primer
1.1. Frequency Modulated Continuous Wave

(FMCW) Radar
In FMCW radar systems, the transmitted signal is a lin-
ear frequency-modulated chirp. The most common chirp
is with the sawtooth pattern. The designed chirp slope is
related to the bandwidth B and chirp duration T , where the
chirp slope is B

T . See Figure 1 for more details [1].
Since the radar frequency changes over time, the wave

travel time between the target and radar can be measured by
the frequency difference between the emitted signal stx(t)
and the returned signal srx(t), known as beat frequency
fbeat = ftx − frx, where ftx and frx are frequencies of
transmitted and received waves at time t. In practice, the
beat frequency can be extracted from the intermediate fre-
quency (IF) signal and a low pass filter (LPF).

Here, we consider a single target example to simplify the
explanation. The IF signal is the complex mixing process
between stx(t) and srx(t):

SIF (t) = stx(t)⊗ srx(t) = cos(2πftxt) · cos(2πfrxt) =

1

2

cos [2π(ftx − frx)t] + cos [2π(ftx + frx)t]︸ ︷︷ ︸
later removed by LPF

 ,

(1)

Next, the frequency-power signal, F , can be obtained by a
Fast Fourier Transform (FFT), F , also called a range FFT
(Figure 1). Ideally, the beat frequency ±fbeat should have
two impulses:

F (f) = F{SIF (t)} =
1

2
[δ(f−fbeat)+δ(f+fbeat)] (2)

In the end, the range-power signal is obtained by converting
frequency f to distance D following:

D =
cf

2µ
(3)
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Figure 1. Radar imaging with range fast Fourier transform (FFT).

where µ = (B/T ) is the radar chirp slope. The radar image
we use as input and aim to synthesize consists of multiple
range-power signals measured in different azimuth angles
with a rotating mechanism.

1.2. Spectral Leakage Modeling
The spectral leakage is due to finite-time sampling of re-
ceived signals, causing energy to spread across adjacent
frequencies when doing range FFT. It transforms the target
measurement into a Sinc function (Figure 2-b):

F(fIF (t)) = sinc(ωTs) (4)

where ω = 2πf and Ts is the sampling duration of radar.
In practice, radar manufacturers apply a windowing tech-

nique to obtain sharp frequency cutoff and lower sidelobes.
The Navtech radar used in our experiments uses Hamming
windowing, which has a range FFT result shown in Fig-
ure 2-c. The distribution after windowing is:

F(WHamming(f(t))) = Ts

[
0.54 sinc

(
ωTs

2π

)
− 0.23

∑
k=±1

sinc

(
ωTs + 2kπ

2π

)]
.

(5)

We observe that the radar signal after windowing is simi-
lar to a Gaussian distribution. Therefore, we use a Gaussian
distribution to approximate the blurred effect, as shown in
Figure 2-d. The width of the Sinc function in the frequency
domain is:

fw =
2π

Ts
(6)
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Figure 2. Modeling spectral leakage in the radar image. (a) Ideal
range FFT. (b) Practical range FFT with spectral leakage. (c) The
practical range FFT is sharpened using a Hamming window. The
final distribution consists of three scaled and shifted sinc functions,
as shown. (d) Proposed Gaussian approximation for Hamming-
window-sharpened FFT.

where Ts is the sampling duration of the radar. The width
of the Gaussian in meters dw is derived with Eq. 3. We
define the variance of the approximated Gaussian as σw =
(0.5× dw)/3 so that 99% of the Gaussian covers the width.
Therefore the Gaussian approximation is ∼ N (0, σ2

w).
The radar used in this paper has Ts = 565µS and

µ = 1.6 × 1012. Therefore, we have dw ≈ 1.04 m and
we set σw = 0.17 m in our experiments. Figure 3 illus-
trates the spectral leakage effect by visualizing overlapped
radar image and LiDAR point cloud.

1.3. Scanning Radar Details
The radar used in this paper is Navtech CIR304-H from the
Boreas Dataset [3]. The radar is operated at 4Hz scanning
rate. The sequence we used has 0.0596 m range resolution
and 0.9 horizontal resolution. The beam spread is 1.8◦ be-
tween -3 dB attenuation points horizontally and vertically.
Additionally, the vertical antenna gain is designed with a
cosec squared fill-in beam pattern, which enables a wider
elevation field of view (FOV) to up to 40 degrees below the
sensor plane. The radar antenna gain provided by the radar
manufacturer is shown in Figure 4. The detailed numbers in
dB is shown in Figure 5.
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Figure 3. Illustration of blurred range-power signal due to spectral
leakage. The overlapped LiDAR and radar data highlight the effect
of radar spectral leakage.
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Figure 4. Visualize azimuth and elevation radar antenna gain.

Figure 5. Antenna gain plot.

2. Noise Detection, Denoising, and Occupancy
Mapping

2.1. Multipath and Saturation Noise Detection

Figure 6 shows the range-power signal and FFT of mul-
tipath, receiver saturation, and noise-free azimuth beams.
The saturation beam is detected when constant ratio C >
Cth. The multipath is detected when C > Cth and
|X[km]| > Ath.
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Figure 6. Illustration of the range-power signal of multipath, receiver saturation, and noise-free azimuth beam and their FFT. Also the
constant and peak magnitude is shown along with the constant ratio threshold Cth for noise detection and with the peak magnitude
threshold Ath for multipath detection.

2.2. Denoising
We reconstruct an initial estimated occupancy map to guide
training, following [2]. Instead of relying solely on a dy-
namic threshold, our noise detection enables more robust
noise removal, leading to improved initial occupancy maps
for training. We propose a denoising algorithm that re-
moves noise across detected noisy azimuth angles, θnoise ∈
Θsat ∪ Θmulti. We first apply Gaussian smoothing on the
range-power signal to reduce the impact of high-frequency
noise.

Gσs(n) =
1√
2πσ2

s

e
− n2

2σ2
s (7)

xsmooth[n] = (x[n] ∗Gσs
), (8)

where the σs is the variance of Gaussian, which we set to 5
bins in our implementation. Next, a masking region selec-
tion algorithm is applied to xsmooth[n]. We find the range
index with the maximum magnitude and search the decay
region to generate a noise-free mask region (ns, ne). Every
bin n outside (ns, ne) region is set to zero. The pseudo-
code is shown in Algorithm. 1. The denoised image is then
used to construct the initial occupancy map.

2.3. Occupancy Mapping
To the handle occlusion issue, we use a W frames window
to reconstruct an occupancy map for each frame. We set
W = 10 in our experiment. We compute the power mean of
each grid to identify the free and occupied space. A power
threshold pth = 0.15 is chosen to obtain a binary grid map
for training supervision.

3. RadarSplat Implementation Details
3.1. Input Format
We set the maximum range of the input radar image to 50
m, with an azimuth resolution of 0.9° and a range resolu-

Algorithm 1 Denoising algorithm with Decay Regions in
Radar Range-Power Data

Require: P (n) (1D array of radar power values), σs

(Gaussian smoothing parameter)
Ensure: nmax (Index of maximum power), D = (ns, ne)

(Decay region start and end indices)
1: Psmooth(n)← GaussianFilter1D(P (n), σs)
2: nmax ← argmax(Psmooth(n))
3: ns ← nmax

4: while ns > 0 and Psmooth(ns − 1) ≤ Psmooth(ns) do
5: ns ← ns − 1
6: end while
7: ne ← nmax

8: while ne < length(Psmooth(n)) − 1 and Psmooth(ne +
1) ≤ Psmooth(ne) do

9: ne ← ne + 1
10: end while
11: return (ns, ne)

tion of 0.0596 m, resulting in an input image size of (400,
839). To ensure accurate error computation, we mask out
the closest 2.5 m of radar data, as these measurements pri-
marily originate from the ego-vehicle.

3.2. RadarSplat
The RadarSplat rendering pipeline, illustrated in Figure 7,
consists of three key stages: elevation projection, azimuth
projection, and spectral leakage modeling. In practice, we
set Q = 10 in the elevation projection step, which results
in the rendered elevation-projected image IElev having a
size of (4000, 839). The azimuth projection is implemented
using a 1D convolution along the azimuth axis with a stride
size of Q and circular padding. As a result, IAzi has a size
of (400, 839). In the end, the spectral leakage modeling is
applied with Gaussian variance σw = 0.17 m derived from



Sec. 1.2.
For Gaussian Splatting, we initialize 2 × 104 Gaussians

with occupancy probability α = 0.1 and noise probability
η = 0.1. The initial Gaussian size is set to 0.5 m with
random initialization. The spherical harmonics level is set
to 10.

3.3. Training Configuration
We set λ1 = 0.8, λ2 = 0.2, λ3 = 5, λ4 = 102, λ5 = 102.
RadarSplat is initialized with 2 × 104 Gaussians of size
s = 0.5 m and trained for 3000 iterations. For multipath
modeling, we set Cth = 0.21, Ath = 0.3, C ′

th = 0.2, rth =
0.5m, and θth = 10◦. Gaussian rendering is set to Q = 10.

3.4. Cartesian-to-spherical Gaussian Conversion
The conversion is as follows:

µspherical =

rθ
ϕ

 =

√x2 + y2 + z2

arctan 2(y, x)
arcsin

(
z
r

)
 (9)

Σspherical = JΣJT (10)
where J is the Jacobian of Cartesian-to-spherical space con-
version.

J =


x
r

y
r

z
r

− y
x2+y2

x
x2+y2 0

− xz
r2

√
r2−z2

− yz

r2
√
r2−z2

√
r2−z2

r2

 (11)

4. Evaluation Details and Extra Evaluation
4.1. Scene Reconstruction Evaluation
We construct a LiDAR pointcloud map to obtain ground-
truth geometry for evaluation. Similar to building an oc-
cupancy map, we use a W-frame window to reconstruct a
local map for each frame, preventing occluded objects from
being included in the ground-truth map. To further solve
the occlusion problem and radar invisible objects in the
scene (mostly tree leaves and sticks), we adopt a small radar
power threshold of 0.1 to remove all the LiDAR points hav-
ing corresponding radar measurements below the threshold.
Also, the 1.8◦ elevation angle is applied when obtaining Li-
DAR ground truth for evaluation. Here are details about our
scene reconstruction metrics:

Relative Chamfer Distance (R-CD). The Relative
Chamfer Distance normalizes the Chamfer Distance by the
maximum pairwise distance between the predicted point
cloud, P , and the ground truth point cloud, Q. The Chamfer
Distance is defined as:

CD(P,Q) =
1

|P |
∑
p∈P

min
q∈Q
∥p− q∥22+

1

|Q|
∑
q∈Q

min
p∈P
∥q − p∥22 (12)

The Relative Chamfer Distance is defined as:

R-CD(P,Q) =
CD(P,Q)

max
qi,qj∈Q

∥qi − qj∥22
(13)

Accuracy. Accuracy is computed as the ratio of cor-
rectly matched points (both in precision and recall sense)
over the total number of points in both clouds.

Accuracy =
|{p ∈ P | d(p,Q) < τ}|+ |{q ∈ Q | d(q, P ) < τ}|

|P |+ |Q|
(14)

where τ is the distance threshold and

d(p,Q) = min
q∈Q
∥p− q∥2 (15)

is the nearest neighbor distance from each predicted point to
the ground truth. We set τ = 0.5 in practice. The accuracy
can be divided into precision and recall:

Precision. Precision measures the fraction of recon-
structed points that are within τ of the ground truth:

Precision =
|{p ∈ P | d(p,Q) < τ}|

|P |
(16)

Recall. Recall measures the fraction of ground truth
points that have a corresponding reconstructed point within
τ :

Recall =
|{q ∈ Q | d(q, P ) < τ}|

|Q|
(17)

Here we provide a more detailed evaluation with preci-
sion and recall, as shown in Table 1. The results show that
we have significant improvement in both precision and re-
call compared to baseline. However, we observed that pre-
cision is relatively lower than recall, indicating that our oc-
cupancy estimation has more false positives than false neg-
atives. We hypothesize that the primary reason for this is
the reconstruction of certain structures that are occluded in
the LiDAR point cloud but visible in the radar image.

Method
Scene Reconstruction

RMSE↓ R-CD↓ Acc.↑ Precision↑ Recall↑
Radar Fields 3.03 0.29 0.59 0.46 0.61

Ours 1.81 0.04 0.91 0.71 0.94

Table 1. Scene reconstruction evaluation with precision and recall
metrics.

4.2. Scene-Separated Evaluation
In Table 2, we show RadarSplat’s results in different
weather and lighting conditions. The consistent results
across diverse weather and lighting conditions also show
robustness of our method.
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Figure 7. RadarSplat rendering. We first project Gaussians to 2D using the elevation antenna gain, then apply the azimuth antenna gain via
a 1D convolution along the azimuth axis. Radar spectral leakage is modeled using 1D Gaussian smoothing along the range axis.

Scenes
Image Synthesis Scene Reconstruction

PSNR↑ SSIM↑ LPIPS↓ RMSE↓ R-CD.↓ Acc.↑
Sunny 25.81 0.50 0.37 1.78 0.04 0.90
Snowy 25.79 0.52 0.36 – – –
Rainy 26.59 0.49 0.39 1.63 0.03 0.93
Night 26.69 0.51 0.37 2.12 0.06 0.92

Table 2. RadarSplat Scene-separated evaluation

4.3. Ablation Studies for Multipath Modeling on
Scenes With and Without Multipath Reflec-
tions

Table 3 show separate ablations on urban scenes with many
multipath effects and natural scenes without multipath ef-
fects to quantify the contribution of multipath modeling.

Image Synthesis
Urban Scene Natural Scene

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

RadarSplat
w/o Multipath 25.25 0.49 0.37 27.27 0.52 0.37
Full Method 26.06 0.51 0.37 27.27 0.52 0.37

Table 3. In urban scenes, where multipath reflections are promi-
nent, the modeling improves results. In contrast, in natural scenes
with only trees surrounding the area, where multipath effects are
minimal, the multipath modeling has negligible impact.

4.4. Ablation Studies on Occupancy Maps
We validate the impact of the proposed denoised occupancy
map in proposed RadarSplat and Radar Fields. Table 4
shows both Radar Fields and our method benefit from the
proposed occupancy map.

Scene Reconstruction RMSE↓ R-CD↓ Acc.↑

Radar Fields
w/ RF Occ. Map 3.03 0.29 0.59

w/ Proposed Occ. Map 2.68 0.11 0.72

RadarSplat
w/ RF Occ. Map 1.83 0.05 0.90

w/ Proposed Occ. Map 1.81 0.04 0.91

Table 4. Comparing effect of ours and Radar Fields’ occupancy
map.

4.5. Ablation Studies on Initialized Gaussians
Table 5 and 6 show performance improves with increasing
number and size of initialized Gaussians, saturating at the
chosen 20k Gaussians and 0.5 m size.

Gaussians Num 5k 10k 20k 30k
PSNR ↑ 25.31 25.79 26.06 26.05
Acc. ↑ 0.88 0.90 0.91 0.91

Table 5. Gaussian number ablation.

Gaussians Size 0.1 0.3 0.5 0.7
PSNR ↑ 21.73 25.14 26.06 26.20
Acc. ↑ 0.65 0.90 0.91 0.91

Table 6. Gaussian size ablation.

4.6. Additional Results
In Figure 8, we present additional results, including the
ground-truth camera view and the rendered reflectance.
RadarSplat achieves superior image synthesis and occu-
pancy estimation compared to the baseline [2]. For re-
flectance rendering, we take advantage of explicit Gaussian
representation to segment out Gaussian that has low occu-
pancy probability and high noise probability, resulting in
a clearer object reflectance map. In addition, the videos
of radar 3D reconstruction compared with ground-truth Li-
DAR are provided in the supplementary materials zip file.

5. Limitations
Occlusion Problem. Although radar provides bird-eye-
view (BEV) power images with radar waves penetrating and
bouncing off to see through occluded objects, occlusion can
still happen in the radar image if the objects have high re-
flectivity. Figure 9 illustrates that a region behind the corner
is occluded in most training views, resulting in wrong occu-
pancy estimation.



Ground Truth

RadarSplat

Radar FieldsLiDAR

RadarImage

Rendered 
Radar

Occupancy  
Estimation

Reflectance 
Prediction

Radar ImageLiDAR

RadarSplat

Radar Fields

Ground Truth

Radar ImageLiDAR

Rendered 
Radar

Occupancy  
Estimation

Reflectance 
Prediction

RadarSplat

Radar Fields

Ground Truth

RadarSplat

Radar Fields

Ground Truth

Figure 8. Additional results on Boreas Dataset.

t = T

Non-OccludedOccludedOccluded

t = T ⋅ 5t = T ⋅ 10

Missing Reconstruction

Ground-Truth  
LiDAR

Final  
Occupancy EstimationRadar Input Frames

GT Reconstruction

Figure 9. Wrong occupancy estimation caused by the occlusion problem.

Dynamic Objects. Similar to [2], our method does not
consider dynamic object modeling. However, the Gaus-
sian scene graph approach proposed in [4, 5] can be incor-
porated to model moving objects separately as individual
Gaussian splats. These dynamic splats can then be com-
bined with static Gaussian splats to construct a complete
dynamic scene representation.

In the future, we plan to overcome these limitations
by integrating occlusion modeling and the Gaussian scene
graph into our method.
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