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6. Additional experiments

6.1. Outdoor localization adversarial weather

Our training approach enables the straightforward integration of ad-

ditional training data, allowing us to effectively adapt to challenging

conditions.

Dataset For this experiment, we utilize the HLoc localization

framework [32] with data from the Boreas dataset [5], which in-

cludes high-resolution images, lidar, and radar data, accurately

localized using GPS in an autonomous driving context. The dataset

features multiple acquisitions of the same route throughout the year,

introducing varied weather and lighting challenges. We select one

sequence with favorable weather as our reference and four others

(dark, late autumn, heavy snowfall, and rain) as query sequences.

Please refer to Sec. 6.1 for a Boreas IDs to sequence name mapping.

Name Boreas ID

Reference boreas-2021-05-06-13-19

Dark boreas-2020-11-26-13-58

Late Autumn boreas-2020-12-18-13-44

Heavy Snowfall boreas-2021-01-26-11-22

Rain boreas-2021-04-29-15-55

Table 5. Mapping from the sequence names/ conditions to the

actual identifiers in the Boreas dataset.

To manage the high sampling rate, we subsample the reference

sequence to approximately 8k images, forming matching pairs

with the next eight images for keypoint extraction and matching.

We then triangulate our reference model using the geolocalized

positions. Each query sequence is subsampled to about 3k images,

and we retrieve 20 candidates per query image using NetVLAD [1]

for localization.

To assess the influence of training data, we replace 10% with

images from the ACDC dataset [31]. This dataset provides 400

training images for adverse conditions (snow, rain, night, fog),

each paired with a corresponding reference image from optimal

conditions through geo-positioning. This enables RIPE to learn

keypoint detection across varying weather scenarios.

Metrics Each query camera pose gets estimated with a Perspective-

n-Point solver in conjunction with RANSAC. We report the AUC

of the pose error for thresholds of 3cm/3◦, 5cm/5◦ and 25cm/2◦.

Results The results in Tab. 8 illustrate the challenges posed by ad-

verse weather conditions, leading to low performance under tighter

thresholds. However, RIPE demonstrates competitive performance

with state-of-the-art methods. Furthermore, incorporating training

data from ACDC, which features images under similar conditions

to Boreas, enhances RIPE’s results. This underscores the signifi-

cance of flexible training regimes that facilitate the integration of

diverse datasets.

ψ 0.0 0.005 0.05 0.5 5 50

AUC@5
◦ – – 61.94 60.46 63.48 60.65

Table 6. Influence of the descriptor loss weight ψ (Eq. (10)) on the

AUC@5
◦ for the IMC2020 dataset. If no result is presented, our

method failed to train successfully.

6.2. Ablations

We used a small subset of the 2020 Image Matching Challenge

(IMC) [15] as our validation dataset during training to optimize

our hyperparameters. We halted the training after 40,000 steps and

report the final AUC@5
◦ for relative pose estimation to assess the

influence of our design choices.

ϵ 0 -7e-5 -7e-6 -7e-7 -7e-8

AUC@5
◦ 61.0 – – 63.48 57.45

Table 7. Influence of the descriptor loss weight ϵ (Eq. (9)) on the

AUC@5
◦ for the IMC2020 dataset. If no result is presented, our

method failed to train successfully.

Tab. 6 illustrates the impact of ψ, which weights the contribu-

tion of our descriptor loss (see Sec. 3.4) to the final loss (Eq. (10)).

RIPE fails to train effectively without our proposed descriptor loss,

as the descriptors receive no direct training signal in its absence.

This leads to poor matching during training, inhibiting the Rein-

forcement Learning process. Conversely, an insufficient influence

of the descriptors is also detrimental.

Tab. 7 shows the influence of the regularization parameter ϵ

(Eq. (9)). RIPE still trains successfully without this regularization if

ϵ = 0, but fails for too large values, as this discourages the network

from detecting keypoints at all, resulting in a failed training.

We also experimented with removing our hyper-column descrip-

tor extraction and replaced it with a bilinear upsampling of the final

encoder layer. With this configuration RIPE fails to train, as the

descriptors are not discriminative enough.

6.3. Towards collapsing to the epipoles

Our reward signal is computed based on the number of keypoints

that remain after filtering for consistency with a single epipolar ge-

ometry. This raises the question of whether training could collapse

by predicting keypoints only at the epipoles.

In the MegaDepth dataset, the epipoles are typically located

outside the image boundaries, so this scenario does not pose a

problem. In contrast, for ACDC and Tokyo 24/7, the epipoles often

lie within the image area. To the best of our understanding, collapse

is prevented in these cases for two reasons: first, the descriptor loss

(Eq. (8)) promotes the learning of discriminative features; second,

grid-based sampling enforces a spatially uniform distribution of

keypoints during training.

In summary, collapse toward the epipoles does not occur in

practice, and we never observed it in any of our experiments.



Method Dark Late Autumn Heavy Snowfall Rain

ALIKED[48]TIM’23 9.75 30.35 89.6 3.91 12.54 91.47 2.37 9.77 72.43 9.84 27.47 95.1

DeDoDe[9]3DV’24 10.64 30.23 86.96 3.76 11.84 88.91 1.84 9.31 54.07 15.58 35.68 94.64

DISK[39]NeurIps’20 8.97 27.68 87.44 3.26 11.19 89.56 2.34 10.16 68.33 12.78 28.96 94.12

SIFT[22]IJCV’04 5.41 19.52 75.01 2.56 8.48 72.75 1.24 4.18 37.58 8.86 21.55 87.13

RIPE MegaDepth 8.58 27.27 88.12 3.96 12.84 91.07 3.22 11.78 68.86 7.0 23.69 93.94

↓ + ACDC +1.31 +1.34 +0.34 +0.41 -0.8 +0.35 +0.14 -1.45 +1.03 +4.57 +5.37 +0.51

RIPE MegaDepth+ACDC 9.89 28.61 88.46 4.37 12.04 91.42 3.36 10.33 69.89 11.57 29.06 94.45

Table 8. Evaluation RIPE on in challenging weather conditions on the Boreas dataset. The results show how RIPE can improve by

incorporating data from the ACDC dataset, facilitated by our innovative training scheme. Best and second-best performances are highlighted.

Figure 6. Example results on images from MegaDepth 1500 for RIPE (ours), ALIKED [1] and DeDoDe [9]

.


