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Abstract

The supplementary material is organized into the following
sections:

• Section A: Implementation Details.
• Section B: Embedding Distribution.
• Section C: Comparison on Video Understanding.

A. Implementation Details

In Table 1, we list key hyper-parameters for all three train-
ing stages and two LLMs, Mistral 0.3 7B and Gemma 2 9B.
We use the same set of hyper-parameters for D-Attn mod-
els and their S-Attn counterparts. The weight decay and
AdamW-related parameters are taken from LLaMA 2 [6]
technical report.

Stage 1 Stage 2 Stage 3
Mistral 0.3 7B Gemma 2 9B Mistral 0.3 7B Gemma 2 9B

lr adapter 1e-3 5e-6 2e-5 5e-6 2e-5
lr llm 0.0 2e-6 1e-5 2e-6 1e-5
lr vis-enc 0.0 2e-7 1e-6 2e-7 1e-6
weight decay 0.0 0.1 0.1
optimizer AdamW AdamW AdamW
Adam β1 default (0.9) 0.9 0.9
Adam β2 default (0.999) 0.95 0.95
Adam ϵ default (1e-8) 1e-5 1e-5
warmup ratio 0.03 0.03 0.03
lr scheduler cosine cosine cosine
epochs 1 1 1
total batch size 512 256 128
dtype bfloat16 bfloat16 bfloat16
deepspeed stage 2 stage 3 stage 3

Table 1. Hyperparameters for three training stages and two types LLMs.
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Figure 1. The UMAP visualization of visual and textual tokens.



Table 2. Main results on VideoChatGPT [3] benchmark. DO, CU, TU, CO denote correctness of information, detail orientation, context
understanding, temporal understanding, and consistency.

Method LLM Max #Frames CI DO CU TU CO

S-Attn-LLaMA-Vid Vicuna 1.5 7B 140 2.2 2.2 2.7 2.1 2.3
D-Attn-LLaMA-Vid Vicuna 1.5 7B 1156 2.4 2.2 2.8 2.0 2.6

B. Embedding Distribution
Most recent LVLMs attempt to align the visual embeddings
from vision encoders (e.g., CLIP [5] or SigLIP [7]) to the
text tokens of LLM by an adapter, which is usually an MLP
block. In Figure 1, we visualize the feature distribution of
visual and textual embeddings in LLaVA-1.6 [2] model us-
ing UMAP [4]. We find that even on the training dataset
of LLaVA-1.6 [2] model, the distribution of textual and vi-
sual embeddings are not fully aligned at input, middle, and
last LLM layers. This observation supports our motivation
that visual and textual tokens in LVLMs are inherently dif-
ferent, and a specifically design attention architecture for
visual tokens could potentially lead to better performance
and efficieny than the tranditional self-attention.

C. Comparison on Video Understanding
To further verify the effectiveness of D-Attn on more input
visual tokens, we train a VideoQA model with the train-
ing recipe of LLaMA-VID [1], where the input is multiple
frames (images) and the model has to model the contex-
tual information across frames to answer the question. The
architecture remains the same as our image model, except
we encode each frame as 64 tokens and concatenate them
as visual inputs. In Table 2, we again observe no perfor-
mance degradation by incorporating V2V Diagonal-Attn.
The D-Attn actually outperforms the S-Attn counterpart
on CI (Correctness of Information) and CO (Consistency).
Although the V2V attention could be important for video
understanding, our explanation is that visual embeddings
could exchange information indirectly via textual embed-
dings. Concretely, each textual embedding gathers visual
information via T2V Cross-Attn at the L-th decoder layer.
Therefore, at the (L+1)-th layer, visual embeddings indi-
rectly exchange information via text embeddings in T2V
Cross-Attn. Moreover, D-Attn can take much greater num-
ber of frames (140 → 1156) than S-Attn, which is critical
for long videos. These advantages make D-Attn suitable for
video understanding tasks.
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