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A. Experimental Settings

A.1. Model Configuration
Our experiments cover four CNNs (ResNet-50/101,
VGG-19, MobileNetV3) and three transformer-based mod-
els (ViT-B/32, Swin Transformer, CLIP-ViT). For brevity,
we refer to ResNet-50, ResNet-101, VGG-19, and Mo-
bileNetV3 as R50, R101, V19, and M3, respectively. Ta-
ble C details the network layers analyzed for identifying
concept circuits. We utilize model architectures and their
corresponding pretrained weights from Torchvision on Ima-
geNet, except for the CUB-200-2011 dataset, where we em-
ploy the anonauthors/cub200-resnet50 pretrained weights
available on the Hugging Face Hub [2]. In transformer-
based models, the feed-forward network (FFN) is known
to serve as a memory mechanism, owing to its structural re-
semblance to the attention mechanism. Moreover, previous
studies [12, 39] indicate that it captures a range of high-
level, human-interpretable concepts. Based on this, we ana-
lyze the activations from the first linear layer of the FFN in
each Transformer block.

A.2. Root Node Selection
The choice of root nodes determines the conceptual focus
of the Granular Concept Circuits (GCCs). We define root
nodes as neurons that rank among the top 1% in activation
across the entire dataset. However, this threshold can be ad-
justed for broader exploration. For instance, selecting the
top 10% highly activated neurons increases the number of
discovered circuits, allowing for a wider variety of concep-
tual representations. While this approach enhances diver-
sity, it introduces a trade-off: if a root node has lower ac-
tivation levels in the given query, the retrieved circuit may
be less relevant to the query itself. Therefore, the selection
of root nodes should be carefully tuned to balance concept
diversity and query relevance.

A.3. Parameter Selections.
Selections for τNS . To evaluate connectivity between two
nodes, we introduce two scores, one of which is the Neuron
Sensitivity Score (SNS). This score quantifies the influence
of a neuron (source node) in the current layer by measur-
ing changes in the next layer when the source node is zero-
masked. If a particular node in the next layer experiences
an exceptionally large decrease, we consider it strongly as-
sociated with the source node.

To identify such significant changes, we recommend us-

Model Layer Names

R50 layer1.0, ..., layer1.2,
layer2.0, ..., layer2.3,
layer3.0, ..., layer3.5,
layer4.0, ..., layer4.2

R101 layer1.0, ..., layer1.2,
layer2.0, ..., layer2.3,
layer3.0, ..., layer3.22,
layer4.0, ..., layer4.2

V19 1, 3, 6, 8, 11, 13, 15, 18,
20, 22, 25, 27, 29, 32, 34,
36

M3 0.0, 1.0, 1.1, 2.0, 2.1,
2.2, 3.0, 3.1, 3.2, 3.3,
4.0, 4.1, 5.0, 5.1, 5.2, 6.0

ViT-B encoder.layers.0, ...,
encoder.layers.11

CLIP-ViT visual.transformer.resblocks.0,
..., resblocks.11

Swin-T features.SwinTransformerBlock.0,
..., SwinTransformerBlock.11

Table C. Network layers used for constructing Granular Concept
Circuits.

ing the Peak Over Threshold (POT) method, a statistical ap-
proach from Extreme Value Theory (EVT) commonly used
in anomaly detection. POT models the tail behavior of a dis-
tribution by focusing on values exceeding a high threshold,
without requiring assumptions about the underlying distri-
bution. As shown in Figure 2, our score distribution is typi-
cally right-skewed, allowing us to identify sufficiently large
score values as positive anomalies. Specifically, POT cap-
tures extreme events by selecting all observations above a
predefined threshold, with exceedances modeled using the
Generalized Pareto Distribution (GPD). Choosing an appro-
priate threshold is crucial—setting it too low includes non-
extreme values, while setting it too high limits data avail-
ability. We examine the effect of the POT threshold on
constructing GCCs by testing thresholds at 95, 90, 80, 70,
and 60 percentiles. A looser threshold (e.g., 60) captures
more nodes, while stricter thresholds may focus on the most
significant ones. We quantitatively compare logit changes



when attenuating GCCs with different thresholds, using the
same settings as Table 2.

Contrary to expectations, the degree of logit drop re-
mains largely consistent across different POT thresholds.
We hypothesize that this is because only a small portion of
the network is actively engaged with a given query, while
the rest is redundant. Since looser POT thresholds do not
significantly improve performance but may introduce re-
dundant circuits and increase computational cost, we rec-
ommend using a POT threshold between 90 and 95. While
the optimal parameter may vary depending on the dataset or
model, our empirical results suggest that thresholds in this
range provide sufficiently strong performance. Note that the
threshold for SNS can also be determined using other well-
established statistical methods, such as Interquartile Range-
based outlier detection [35].

POT 95 90 80 70 60 AVG

Original 17.17 16.77 17.28 16.71 16.52 -

Random 15.66 15.15 15.61 14.81 14.54 (▼1.74)

Ours 6.41 6.60 10.42 6.92 (▼5.66)

OursC 16.12 15.41 16.12 15.15 15.43 (▼1.24)

Table D. Logit change comparison using threshold values esti-
mated by POT in ResNet50.

Selections for τSF . The Semantic Flow Score (SSF ) en-
sures that information from the source node is meaningfully
shared with the connected node. Unlike the Neuron Sensi-
tivity Score (SNS), which directly measures connectivity
strength, the Semantic Flow Score helps filter out spuri-
ously aligned nodes among those with high SNS values.
To achieve this, we introduce a threshold (τSF ) to control
the required level of semantic alignment. A stricter τSF en-
sures that only genuinely related nodes are retained, while a
looser τSF may weaken the constraint. This balance is par-
ticularly important in complex models, which often exhibit
polysemantic characteristics, where an overly high thresh-
old could inadvertently remove valid connections. To ad-
dress this trade-off, we set τSF as the average value across
all nodes in the target layer, ensuring that only nodes with
above-average semantic similarity to the source node are re-
tained. This approach maintains a necessary level of infor-
mation sharing while allowing the threshold to adapt flexi-
bly based on model and layer characteristics.

A.4. Visualization strategy
To reveal the specific visual features that contribute to a
neuron’s activation and enable a precise analysis of learned
representations, we apply cropping and masking techniques
based on the activation map of a given sample and neuron.

The activation map is upsampled to match the input query
image size, and Gaussian blur is applied to suppress noise
and improve spatial coherence. The processed activation
map is then thresholded to generate a binary mask, isolat-
ing highly activated regions. The largest connected region
is identified using a bounding box, which is subsequently
used to crop and standardize the visualization. Finally, less
activated areas are darkened by overlaying the binary mask
with lower transparency onto the original image, improving
interpretability.

B. Quantitative Results on Transformers
In line with the quantitative results on convolution-based
models (Table 2), we evaluate performance degradation in
transformer-based models by ablating the discovered cir-
cuits. Unlike the previous setting where we measured logit
drops, we use accuracy drop as the evaluation metric here,
as the transformer architecture includes layer normaliza-
tion, which can suppress logit differences while still affect-
ing the final decision. The results are presented in Table E.
For CLIP-ViT, classification is based on the text embedding
with the highest cosine similarity to the image embedding.
The results show that ablating our identified circuits leads to
a substantial accuracy drop of 33.85%p, whereas randomly
ablating the same number of nodes results in only a 0.81%p

decrease. This indicates that our method can be effectively
extended to transformer-based models.

ViT Swin-T CLIP-ViT Avg

Original 76.61 81.92 62.19 73.57

Random 77.19 81.34 59.75 72.76 (▼0.81)

Ours 58.47 36.92 23.78 39.72 (▼33.85)

Table E. Impact of circuit ablation on ViT and its variants.

C. User-Study
To evaluate the interpretability and effectiveness of Granu-
lar Concept Circuits (GCC), we conducted a user study with
33 participants. The objective was to assess whether GCC
visualizations offer meaningful insights into model behav-
ior and enhance human understanding of circuit represen-
tations. Figure I to Figure L illustrate the questions pre-
sented in the user study, while the corresponding responses
are summarized in Figure 5.



Figure I. User study questions (Part 1). The questions are presented in a sequential order from top-left to bottom-left, followed by top-right
to bottom-right. Participants were instructed to read each question carefully and select their responses based on the given options.



Figure J. User study questions (Part 2). Continuation of the user study evaluation, following the same structure as Figure I.



Figure K. User study questions (Part 3). Continuation of the user study evaluation, following the same structure as Figure J.



Figure L. User study questions (Part 4). Final set of evaluation questions in the user study.


