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Base Methods
Booster ETH3D Middle14 DIS

CE ↓
AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ D3R ↓ BR↑

MiDaS v3.1[2]

MiDaS v3.1 [2] 0.0538 0.973 0.0655 0.965 0.0399 0.991 0.1914 0.028 -
PatchFusion P=16 [23] 0.0613 0.964 0.0826 0.952 0.0465 0.989 0.1435 0.100 0.456
PatchRefiner P=16 [24] 0.0520 0.977 0.0594 0.971 0.0377 0.993 0.1396 0.058 0.461

PRO 0.0513 0.977 0.0578 0.972 0.0370 0.993 0.1261 0.062 0.077

DepthAnythingV1 [46]

DepthAnythingV1 [46] 0.0482 0.977 0.0489 0.981 0.0315 0.995 0.1546 0.023 -
PatchFusion P=16 [23] 0.0621 0.962 0.0672 0.970 0.0410 0.993 0.1246 0.081 0.393
PatchRefiner P=16 [24] 0.0507 0.977 0.0480 0.982 0.0301 0.996 0.1240 0.043 0.409

PRO 0.0500 0.978 0.0455 0.983 0.0294 0.996 0.1193 0.052 0.073

Table 5. Generality across various base models. Quantitative comparison of depth estimation methods on Booster [29], ETH3D [35],
Middlebury 2014 [34], and DIS-5K [28] datasets. Bold indicates the best performance in each metric.

Meth BFM
Booster ETH3D Middle14 DIS

AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ D3R ↓ BR↑

PF [23]
0.0504 0.985 0.0735 0.956 0.0450 0.989 0.1124 0.206

✓ 0.0446 0.991 0.0761 0.956 0.0447 0.991 0.1149 0.198

PR [24]
0.0348 0.989 0.0435 0.985 0.0292 0.995 0.0830 0.151

✓ 0.0307 0.994 0.0432 0.985 0.0290 0.995 0.0791 0.151

Table 6. Effect of Bias Free Masking (BFM) on training of Patch-
Fusion (PF) [23] and PatchRefiner (PR) [24].

A. Extra Experiments

Generality across Base Models. Replacing the base model
(BM) requires retraining. To show the generality of our
method, we provide additional comparisons using MiDaS
v3.1 [2] and DepthAnythingV1 (DA1) [46] as base mod-
els. All evaluations are conducted in the same way in the
Section 4.3. As shown in the Table 5, the MiDaS v3.1-
and DA1-based PRO consistently outperform the previous
SOTA models. However, all DA1-based methods show in-
ferior AbsRel on the Booster compared to the DA1. This
is because, as shown in the Fig. 6, DA1 yields poor predic-
tions on transparent objects, thus leading the other methods
to further degraded performance.

Image MiDaS DA1 DA2

Figure 6. Depth estimation results from different base models (Mi-
DaS v3.1 [2], DepthAnythingV1 [46], and DepthanythingV2 [47].

Effect of Bias Free Masking (BFM). To further demon-
strate the effectiveness of BFM, we apply it to both Patch-
Fusion [23] and PatchRefiner [24] during training. The con-
sistent performance improvements observed across most
metrics validate the generalizability of our approach, as
summarized in Table 6.

P
Booster ETH3D Middle14 DIS

AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ D3R ↓ BR↑
3 × 3 0.0305 0.994 0.0423 0.985 0.0288 0.995 0.0805 0.125
4 × 4 0.0304 0.994 0.0422 0.985 0.0287 0.996 0.0803 0.156
5 × 5 0.0305 0.994 0.0423 0.985 0.0288 0.996 0.0797 0.162

Table 7. Effect of patch numbers on the performance.

Base CE ↓ Booster ETH3D Middle14 DIS
AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ D3R ↓ BR↑

Diag 0.075 0.0302 0.994 0.0423 0.986 0.0288 0.996 0.0787 0.171
GPCT 0.049 0.0304 0.994 0.0422 0.985 0.0287 0.996 0.0803 0.156

Table 8. Quantitative comparisons between regularizing consis-
tency diagonally (Diag) and GPCT.

Effect of Patch numbers on Performance. To investi-
gate the effect of the number of patches during inference,
we conduct experiments with the PRO model by partition-
ing the input images into 3×3, 4×4, and 5×5 patches, and
compare their performance. As we can see in the Table 7,
depth metrics remain stable across patch numbers, while
edge metrics improve with more patches. This allows users
to adjust patch counts at inference to balance speed and de-
tail without retraining.
Ablation on GPCT vs Diagonal consistency. We addition-
ally provide comparison between regularizing 2-diagonal
patches and our GPCT in the Table 8. While the depth
metrics show marginal differences, GPCT achieves sig-
nificantly better consistency in CE metric qualitatively as
shown in the Fig.7.

GPCT DiagonalGPCT Diagonal

Figure 7. Qualitative comparisons between Diagonal approach
and GPCT.
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Figure 8. Architecture of the Residual Prediction Network and Frequency Fusion Module (FFM). (a) Residual Prediction Network.
The Residual Prediction Network comprises an encoder, a decoder, and the Fusion Module. (b) Frequency Fusion Module (FFM).
We utilize Discrete Wavelet Transform (DWT) to decompose the input features into four frequency components. Then, each frequency
component is processed independently using convolutional layers.

Models FLOPs
(Mac) Parameter

DIS UHRSD Middle14 ETH3D Booster NuScenes
BR↑ BR↑ AbsRel↓ δ1 ↑ D3R ↓ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑

Conv 31664G 63M 0.127 0.071 0.0290 0.995 0.0842 0.0428 0.984 0.0306 0.993 0.106 0.882
FFM (Ours) 20250G 51M 0.156 0.083 0.0287 0.996 0.0803 0.0422 0.985 0.0304 0.994 0.104 0.883

Table 9. Ablation study of the Frequency Fusion Module (FFM) on DIS-5K [28], UHRSD [45], Middlebury 2014 [34], ETH3D [35],
Booster [29], and NuScenes [4]. Bold indicates the best performance in each metric.

B. Architecture of the Fusion Module
The encoder takes Pi, Di

f , and ROI(Dc,P
i) as in-

puts and produces a set of five intermediate fea-
tures, denoted as Fenc = {f ienc,j}5j=1 following
[23]. Then, the fused feature map Fi

fuse is obtained
through the frequency fusion module (FFM), defined as
Fi

fuse = FFM(concat(Fi
f ,ROI(Fc,P

i))). Subsequently,
concat(Fi

fuse,ROI(Fc,P
i),Fenc) is processed through two

consecutive layers, each consisting of a 3 × 3 convolution,
batch normalization, and ReLU activation. Finally, the re-
sulting feature is fed into the DPT decoder [31] to obtain
the residual map R.
Architecture of the Frequency Fusion Module (FFM)
To obtain accurate depth values from the coarse depth and
preserve fine details from the fine depth, we design a Fre-
quency Fusion Module (FFM) that effectively extracts and
integrates edge information. We utilize Discrete Wavelet
Transform (DWT) to decompose the input features into
four frequency components: LL, LH, HL, and HH, which
represent the low-frequency and high-frequency informa-
tion. Each component is processed with its own dedi-
cated convolution to capture scale-specific features. Fi-
nally, the components are recombined using the Inverse Dis-
crete Wavelet Transform (IDWT), resulting in fused fea-
tures that retain both global depth consistency and enhanced
edge details. Overall process is described in Fig. 8-(b).
To describe this process in more detail, we first decom-
pose ROI(Fc,P

i) and Fi
f into four frequency sub-bands X

(∀X ∈ {LL,LH,HL,HH}) using DWT. Each sub-band
is then fused using a corresponding convolution ConvX.
Finally, the fused feature map Fi

fuse is obtained through
IDWT.

Xi
c,X

i
f = DWT(ROI(Fc,P

i)),DWT(Fi
f) (8)

Xi
fuse = ConvX(concat(Xi

c,X
i
f)) (9)

Fi
fuse = IDWT(LLi

fuse,LH
i
fuse,HLi

fuse,HHi
fuse) (10)

B.1. Ablation study of FFM
To validate the effectiveness of the Frequency Fusion Mod-
ule (FFM), we conduct an ablation study by replacing the
FFM with a simple convolutional block consisting of Conv-
ReLU-Conv layers. To ensure that any performance gain
is not simply due to an increase in the number of param-
eters or FLOPs, we design the simple convolutional block
to have more parameters and FLOPs than the FFM. This
allows us to attribute the performance improvement to the
design of FFM itself, rather than computational complexity.
As shown in the Table 9, our method not only achieves the
best performance in standard depth metrics, but also yields
significant improvements in edge accuracy. Specifically, it
achieves a 22.5% improvement on the DIS-5K dataset and
a 16.9% improvement on the UHRSD dataset in the Bound-
ary Recall (BR) metric. In addition, we observe a 4.6%
improvement in the edge quality metric (D3R). It demon-
strates that the proposed FFM effectively integrates edge
information through the use of Discrete Wavelet Trans-
form (DWT), which enables selective enhancement of high-
frequency details without sacrificing global structure. This
highlights the benefit of frequency-domain processing in
depth refinement tasks.
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C. Additional Implementation Details
Details in training. Before training, we first filter out un-
necessary training samples based on the unreliable mask,
Munreliable, described in Section 3.3. Specifically, we load
each Munreliable using NumPy and discard the correspond-
ing training sample if the mean value of Munreliable ex-
ceeds 0.5, indicating excessive unreliable regions. During
training, we randomly crop a region (e.g., 846×1505) from
a 2160×3840 input to generate 2×2 overlapping patches
(540×960 each), which are resized to 518×518 for refine-
ment. The overlap size (234×415) corresponds to 224

518 ≈
43% of the patch dimensions, where 224 is the empirically
chosen overlap value from Section 4.4.
Details in inference. At inference, the input is divided
into a 4×4 non-overlapping grid, and the refined 518×518
patches are reassembled into a 2072×2072 depth map. The
final depth map is then upsampled to the original resolution
via bilinear interpolation. This inference procedure is con-
sistent with PFP=16 and PRP=16. As demonstrated in Table
7, the number of patches can be flexibly adjusted depending
on the inference setting.

D. Qualitative Results
Ablation Study In the ablation study (Section 4.4), we
analyze the effect of Grouped Patch Consistency Train-
ing (GPCT) and Bias Free Masking (BFM) quantitatively.
In this section, we analyze the effect of GPCT and BFM
with qualitative results. As shown in the Fig. 9, the model
trained without GPCT shows remarkable depth disconti-
nuity problem on the grids. On the other hand, our PRO
model trained with GPCT alleviates the depth discontinu-
ity problem. Likewise, as shown in the Fig. 10 , the model
trained without BFM exhibits artifacts on transparent sur-
faces, such as glass windows, as well as reflective surfaces
like TV screens. In contrast, our model trained with BFM
effectively refines only the edge regions while preventing
artifacts on transparent objects.
Additional Qualitative Results We provide additional
qualitative comparisons of BoostingDepth [26], PatchFu-
sion [23], PatchRefiner [24], and PRO (Ours) on the
UHRSD [45] dataset and on internet images (e.g., from Un-
splash1 and Pexels2), as shown in Fig.11 and Fig.12.

1https://unsplash.com
2https://www.pexels.com
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Images Without GPCT (b) Ours (d)

Figure 9. Qualitative comparisons of GPCT’s impact on ETH3D [35], Booster [29], and DIS-5k [28]. We compare PRO (Ours (d))
with the model trained without Grouped Patch Consistency Training (GPCT) (b). (b) and (d) represent the model index in Table 3. We also
visualize the residuals to highlight the presence of artifacts more effectively. Zoom in for details.
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Images Without BFM (c) Ours (d)

Figure 10. Qualitative comparisons of BFM’s impact on ETH3D [35], Booster [29], and DIS-5k [28]. We compare PRO (Ours (d))
with the model trained without Bias Free Masking (BFM) (c). (c) and (d) represent the model index in Table 3. We also visualize the
residuals to highlight the presence of artifacts more effectively. Zoom in for details.
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Figure 11. Qualitative comparisons for patch-wise DE methods on UHRSD [45] and images from the internet. We compare PRO
(Ours) with BoostingDepth [26], PatchFusion (PF) [23], and PatchRefiner (PR) [24]. The time displayed in the leftmost depth column
represents the inference time. Black rectangle area represents the transparent object region. Black arrows indicate patch boundaries. Zoom
in for details.
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PRO (Ours)Images DA2 PFP=16 PFP=177 PRP=16 PRP=177BoostingDepth
1.4s16.2s1.5s36.8s3.4s12.7s

Figure 12. Qualitative comparisons for patch-wise DE methods on images from the internet. We compare PRO (Ours) with Boost-
ingDepth [26], PatchFusion (PF) [23], and PatchRefiner (PR) [24]. The time displayed in the top depth row represents the inference time.
Black rectangle area represents the transparent object region. Black arrows indicate patch boundaries. Zoom in for details.
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