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Supplementary Material

A. Additional details on experimental setup

A.1. Datasets

In this section, we provide additional details on the im-
age–label datasets used in the main experiments pre-
sented in the paper. These span general object recogni-
tion, fine-grained classification, and specialized domains.
The datasets include ImageNet-1k [10], CIFAR-10 [21],
CIFAR-100 [21], SUN397 [45], FGVCAircraft [28], Eu-
roSAT [16], StanfordCars [20], Food101 [3], Oxford-
Pets [35], Flowers102 [33], Caltech101 [11], DTD [7], and
UCF101 [40].

A.2. Implementation details

As mentioned in the main paper, we use CLIP ViT-
B/32 backbone in all our experiments. We provide ad-
ditional results using other CLIP backbones and architec-
tures, such as SigLIP [50] in Appendix C.4. Regarding the
proposed ViLU, the MLP layer for misclassification pre-
diction follows a four-layer architecture with dimensions
[512, 256, 128, 1] and ReLU activations. Training is per-
formed using SGD as the optimizer, with the cross-attention
layers remaining frozen during the first epoch. We select the
learning rate through a grid search over {10�1, 10�2, 10�3}
and explore batch sizes among {128, 256, 512, 1024}.

A.3. Baselines & Implementation

• MCM [30]: Maximum Concept Matching (MCM) es-
timates uncertainty in VLMs by leveraging the softmax
probability distribution over all classes or captions. It se-
lects the most likely caption for an image based on the
highest probability score, providing a natural measure
of confidence in the model’s predictions. No additional
training is required since MCM directly uses the model’s
output probabilities.

• MCM + TS [15]: This method extends MCM by apply-
ing Temperature Scaling (TS) to adjust the softmax prob-
abilities better. TS optimizes the temperature parameter
to refine the confidence scores, leading to more calibrated
uncertainty estimates. The multiplicative temperature pa-
rameter is learned using the whole training dataset to min-
imize expected calibration error, using LBFGS optimizer.

• Entropy [38]: This method quantifies uncertainty in neu-
ral network predictions by calculating the Shannon en-
tropy of the output probability distribution. High entropy
indicates more significant uncertainty, as the model as-
signs similar probabilities across multiple classes, reflect-
ing ambiguity in its prediction. On the other hand, low
entropy signifies confidence, with the model favoring a

specific class. Entropy-based uncertainty estimation does
not require additional training.

• DOCTOR [14]: DOCTOR quantifies uncertainty by an-
alyzing the confidence distribution of the model’s pre-
dictions. It computes the Rényi entropy of order two, a
measure based on the squared probabilities assigned to
each class, emphasizing how concentrated or dispersed
the probability mass is. A prediction with one dominant
probability value will yield a low uncertainty score, while
a more evenly spread distribution results in higher uncer-
tainty. This method does not require additional training
and operates directly on the model’s softmax outputs.

• Rel-U [13]: Rel-U is a data-driven method that in-
corporates cross-label uncertainties directly in the logit
space. Learning relationships between class logits pro-
vides a refined estimation of uncertainty beyond tradi-
tional confidence scores. Due to its reliance on a cross-
label cost penalty matrix, Rel-U does not apply to image-
text datasets where labels are absent. Rel-U’s hyper-
parameters are fixed to � = 0.15 and T = 0.5 greedily,
since they provided the best performance.

• Learning Visual Uncertainties (LVU) [8, 19, 47]:

LVU refers to a class of models designed to predict
the loss of a visual backbone as a means to estimate
potential errors. ConfidNet [8] established that accurately
predicting uncertainty is equivalent to estimating the
model’s loss—if a model can predict the loss of its visual
backbone, it inherently quantifies its error. Another
approach, Pretrained Visual Uncertainties [19], follows
a similar principle by learning to predict backbone loss,
leveraging pretraining on ImageNet-21k.

Implementation: To evaluate the LVU baseline, we use
the same MLP architecture as our model but restrict the
input to the visual token only. Additionally, following [8,
19], this baseline is trained with an MSE loss, in contrast
to our method, which uses a BCE loss.

• ProbVLM [42]: ProbVLM introduces a probabilistic
adapter that estimates probability distributions for em-
beddings of pre-trained VLMs. This is achieved through
inter- and intra-modal alignment in a post-hoc manner.
The goal is to capture the inherent ambiguity in embed-
dings, reflecting the fact that multiple samples can repre-
sent the same concept in the physical world. This method
enhances the calibration of embedding uncertainties in re-
trieval tasks and benefits downstream applications like ac-
tive learning and model selection.
Implementation: ProbVLM models probability distri-
butions over the embeddings of image and text modal-



ities. However, it does not explicitly model the uncer-
tainty in their interaction via cosine similarity. As a result,
directly adapting the method for image classification is
not straightforward. We attempted to include ProbVLM
in our baseline comparison by using its proposed visual
aleatoric uncertainty metric, but it resulted in nearly ran-
dom failure prediction performance. Additionally, we ex-
plored using its cross-modal loss as an uncertainty logit,
applying a softmax transformation, but this approach also
proved ineffective. In contrast, BayesVLM addresses this
limitation by modeling the uncertainty over the similar-
ity computation, enabling a more principled approach to
downstream tasks like image classification.

• BayesVLM [2]: BayesVLM is a training-free method
for estimating predictive uncertainty. It employs a post-
hoc approximation of the Bayesian posterior, allowing for
analytic computation of uncertainty propagation through
the VLM. By approximating the Bayesian posterior over
model parameters, BayesVLM captures uncertainties in-
herent to the model itself (image and text encoders).
These model uncertainties are then propagated through
the VLM to produce uncertainty estimates for predictions.
Implementation: To evaluate BayesVLM, we follow the
implementation provided in its official Github repository
https://github.com/AaltoML/BayesVLM

B. Additional details on ViLU

B.1. Bilinear interpretation of MCM

In Sec. 4.2 of the main paper, we mentioned that ViLU
is a consistent generalization of MCM. More precisely,
the uncertainty module g✓ can model the unnormalized
MCM score by approximating the following bilinear form
on zViLU = (zv, zt̂, z

↵
t ):

g✓(zViLU) =
1

2
zT

ViLU A zViLU = z>
v zt̂, (11)

with A =

 
0 Id 0
Id 0 0
0 0 0

!
2 R3d⇥3d.

B.2. ViLU variant for generalization experiments

For the generalization experiments presented in the main
paper (cross-dataset transfer) and the supplementary mate-
rial (domain generalization and concept coverage), we used
a slightly modified version of ViLU. Specifically, the MCM
score was explicitly provided as an additional input to the
uncertainty module g✓, alongside the visual and textual
embeddings. While the original design of ViLU allows
g✓ to model this behavior implicitly through interactions
between the modalities, we found that explicitly including
the MCM score improves uncertainty generalization.

C. Additional experimental results

C.1. Impact of MLP depth on performance

The results in Fig. 7 show that ViLU is relatively robust
to MLP depth variations, particularly on ImageNet, where
performance remains stable across different configurations.
Across all tested datasets, a depth of 4 layers consistently
achieved strong results, suggesting that this architecture
provides a good balance between expressiveness and gen-
eralization for failure prediction.

Figure 7. Impact of MLP depth. Performance of ViLU on Ima-
geNet and CIFAR-10 for different MLP depths.

C.2. Robustness to image-text task complexity

We analyze in Tab. 6 how inference-time batch size affects
failure detection performance for MCM, LVU, and ViLU on
the CC12M dataset. As batch size increases, the number of
candidate captions used during inference grows, introduc-
ing more semantic competition and making the task more
complex. Despite this, ViLU consistently outperforms both
MCM and LVU across all tested settings. Notably, even
under very large batch sizes—16,384 and 32,768—ViLU
maintains strong performance, with only moderate degra-
dation in AUC and FPR95. These results confirm the ro-
bustness of our method to increased image-text ambiguity
at test time.

MCM [30] LVU [8, 19, 47] ViLU

Batch Size AUC" FPR95# AUC" FPR95# AUC" FPR95#

128 92.7 15.6 75.2 76.2 96.9 15.6

512 90.1 54.6 74.8 76.5 95.7 22.5

1024 88.8 58.8 74.4 76.5 95.2 25.2

2048 87.5 61.5 74.3 76.8 94.4 28.7

4096 86.4 64.2 73.9 77.0 93.6 31.8

8192 85.3 65.3 73.6 77.0 92.8 34.9

16384 84.5 66.4 73.3 76.7 91.9 37.8

32768 83.7 67.0 73.2 76.6 91.1 39.9

Table 6. Numerical results corresponding to Fig. 4, showing the
effect of inference batch size on failure detection for ViLU (on
CC12M).



C.3. Reliability of misclassification detection

Fig. 8 illustrates the relationship between misclassifica-
tion detection performance and the zero-shot accuracy of
the vision-language model for each baseline. Each dot at
a given x-coordinate represents the classification perfor-
mance of different baselines on the same dataset. The re-
sults emphasize the superior reliability of the uncertainty
estimates provided by our method, particularly in low zero-
shot accuracy settings. Notably, the tendency curves indi-
cate a strong correlation between model performance and
uncertainty metrics for both MCM and BayesVLM. Specif-
ically, as zero-shot accuracy decreases, these two meth-
ods exhibit the worst performance. This suggests that
they are only reliable when the model’s zero-shot accuracy
is high—an unpredictable scenario in real-world settings,
where ground-truth labels are unavailable.

Figure 8. Reliability of misclassification detection. Our method,
ViLU, enhances misclassification detection by providing more re-
liable uncertainty estimates, particularly when zero-shot accuracy
is low.

C.4. Extension to different VLMs.

Tab. 7 presents the performance of ViLU when applied to
different zero-shot vision-language backbones, including
CLIP [36] and SigLIP [50], with both ViT-B and ViT-L
variants. Across all settings, ViLU consistently outperforms
MCM by a large margin in both AUC and FPR95, demon-
strating strong and reliable failure detection. On CIFAR-
10, the improvements are particularly pronounced: for ex-
ample, using CLIP ViT-L/14, ViLU achieves an AUC of
99.0 compared to 93.6 for MCM, and reduces FPR95 from
31.5 to just 4.1. On ImageNet-1k, the gains remain sub-
stantial, with up to 30-point reductions in FPR95. Unlike
LVU-based methods [8, 19, 47], which require access to the
model’s pre-training loss, ViLU is trained solely from clas-
sification correctness, making it applicable to a broad range
of frozen or proprietary VLMs. Overall, the consistent re-
sults across architectures confirm that ViLU generalizes ef-
fectively with minimal assumptions.

Backbone Method CIFAR-10 ImageNet-1k

AUC" FPR95# AUC" FPR95#
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ViT-B/16 MCM [30] 90.9 47.3 81.0 73.0
ViLU 98.4 8.0 90.3 44.2

ViT-L/14 MCM [30] 93.6 31.5 82.9 68.9
ViLU 99.0 4.1 91.2 39.2
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ViT-B/16 MCM [30] 92.8 46.1 84.2 65.8
ViLU 97.6 13.3 90.7 44.4

ViT-L/16 MCM [30] 95.6 29.1 86.8 64.1
ViLU 98.4 7.8 91.3 41.4

Table 7. Generalization across backbones. ViLU shows consis-
tent performance gains on several VLMs compared to MCM.

C.5. Domain generalization on ImageNet variants

To evaluate ViLU’s robustness under distribution shift, we
consider a domain generalization setup in which ViLU is
trained on the original ImageNet dataset and evaluated on
two domain-shifted variants: ImageNet-V2 (IN-V2) and
ImageNet-Sketch (IN-S). We first assess ViLU’s uncer-
tainty estimates in a zero-shot transfer setting, where the
model is applied directly to each variant without any adap-
tation. As shown in Tab. 8, ViLU achieves competitive per-
formance, notably outperforming LVU on IN-S (FPR95 of
73.1 vs. 86.6) and remaining close to MCM (70.9). On
IN-V2, ViLU performs even better, reaching an FPR95 of
54.8 compared to 71.7 for MCM and 77.3 for LVU. These
results confirm that ViLU retains reliable uncertainty esti-
mates even when evaluated on unseen domains.

We then explore a few-shot adaptation scenario, where
ViLU is fine-tuned using only five labeled images per class
from the target domain (IN-V2 or IN-S). On IN-S, this
minimal supervision significantly reduces FPR95 from 73.1
to 54.4, outperforming both MCM (70.9) and LVU (72.3).
On IN-V2, ViLU achieves similarly strong improvements,
lowering FPR95 from 54.8 to 52.7, once again surpassing
MCM (71.7) and LVU (68.7). These results highlight
ViLU’s strong adaptability in low-data regimes and confirm
that even minimal adaptation of the uncertainty head can
lead to substantial gains in reliability under distribution
shifts.

Dataset
MCM LVU

(zero-shot)
ViLU

(zero-shot)
LVU

(5-shot)
ViLU

(5-shot)
IN-V2 71.7 77.3 54.8 68.7 52.7

IN-S 70.9 86.6 73.1 72.3 54.4

Table 8. FPR95# on ViLU’s domain generalization from Ima-
geNet to ImageNet-V2 and ImageNet-Sketch.



C.6. Impact of concept coverage in pre-training

In the main paper, we evaluated the zero-shot generaliza-
tion ability of ViLU when pre-trained on CC12M and tested
on 12 downstream datasets spanning various domains. In
this section, we conduct a controlled experiment to as-
sess whether better coverage of target concepts during pre-
training improves zero-shot transfer. To this end, we con-
struct a synthetic multi-dataset by combining the training
sets of the 12 downstream datasets. Each image is paired
with a pseudo-caption of the form “This is a photo of a ”,
allowing us to train ViLU in the same image-caption set-
ting as for CC12M. As shown in Tab. 9, this targeted pre-
training leads to a substantial reduction in FPR95 across
most datasets, with an average of 63.1 compared to 68.6 for
the CC12M variant and 70.5 for MCM. These results con-
firm that more explicit coverage of the target classes during
pre-training can significantly improve the quality of uncer-
tainty estimates in zero-shot settings.

CC12M Multi-datasets
Dataset MCM ViLU ViLU

CIFAR-10 52.1 54.2 31.9

CIFAR-100 67.3 59.9 50.3

Caltech101 68.7 48.8 70.8
Flowers102 68.0 67.4 45.9

OxfordPets 59.9 58.1 72.1
Food101 63.3 67.4 36.2

FGVCAircraft 82.9 82.3 80.3

EuroSAT 87.6 85.7 91.3
DTD 77.9 78.2 75.2

SUN397 75.9 72.7 81.0
StanfordCars 73.4 84.1 76.4
UCF101 68.9 63.8 45.4

Average 70.5 68.6 63.1

Table 9. FPR95# across datasets. Zero-shot performance when
pre-trained on a Multi-datasets vs. CC12M.

C.7. Qualitative results

We provide additional visualizations on eight datasets in
Fig. 9 and Fig. 10, illustrating the distribution of uncer-
tainty scores for correctly and incorrectly classified valida-
tion samples. Our results demonstrate the consistency of
ViLU in assigning high uncertainty scores to misclassified
samples (red) and low uncertainty scores to correctly clas-
sified ones (blue).

Unlike visual uncertainty models such as ConfidNet [8],
which rely solely on image features, our multimodal archi-
tecture leverages both visual and textual information to pro-
vide more reliable uncertainty estimates. Learning a cross-
attention mechanism between image and text allows ViLU
to better capture ambiguities in class definitions, leading to
improved uncertainty calibration across diverse datasets.

Figure 9. Uncertainty score distribution. Prediction for correctly
and incorrectly classified samples on CC12M, LAION400M, CI-
FAR100 and DTD.

Figure 10. Uncertainty score distribution. Prediction for cor-
rectly and incorrectly classified samples on EuroSAT, Food101,
Flowers102 and UCF101.


