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A. Theoretical Proofs
A.1. Proof of Theorem 1: Accelerated Convergence
Proof. Consider the cross-entropy loss LCE(W ) with
Softmax-activated logits. Under λmin-strong convexity near
the optimal weights W ∗, the gradient descent update satis-
fies:

∥W (k+1) −W ∗∥2 ≤
(
1− ηλmin

2

)
∥W (k) −W ∗∥2, (1)

for learning rate η ≤ 1/L, where L is the Lipschitz con-
stant of ∇LCE. The number of iterations needed to achieve
∥W (k) −W ∗∥ ≤ ϵ is bounded by:

k ≥ 2

ηλmin
log

∥W (0) −W ∗∥
ϵ

. (2)

Let θc = arccos(⟨W (0)
c ,W ∗

c ⟩). The initial alignment
error is geometrically quantified by:

∥W (0)
c −W ∗

c ∥2 = 2(1−cos θc), for unit vectors W (0)
c ,W ∗

c .
(3)

Under hyperspherical initialization (HSI) in GPA:

cos θGPA
c = ⟨µc/∥µc∥,W ∗

c ⟩ ≥ cos θrand
c , (4)

where θrand
c ∼ U(0, π/2) for random initialization. Empir-

ical measurements show E[θGPA
c ] ≈ 18◦ vs E[θrand

c ] ≈ 45◦,
yielding a complexity reduction factor:

1− sin θrand

1− sin θGPA
≈ 1− sin 45◦

1− sin 18◦
≈ 2.7. (5)

A.2. Proof of Theorem 2: Fisher-Optimal Direction
Proof. For Gaussian class-conditionals ϕ(x)|y = c ∼
N (µc,Σ), the Fisher-optimal classifier between class c and
background 0 maximizes:

J(Wc) =
(WT

c (µc − µ0))
2

WT
c ΣWc

. (6)

The optimal solution is W Fisher
c ∝ Σ−1(µc − µ0).

Under GPA initialization W
(0)
c = µc/∥µc∥. When Σ =

σ2I + E with ∥E∥2 ≤ O(1/
√
Nc):

W (0)
c ∝ µc ≈

σ−2(µc − µ0)

1 +O(1/
√
Nc)

, (7)

where we use µ0 = E[ϕ(x)] ≈ 1
|C|
∑

c µc. Hence:

⟨W (0)
c ,W Fisher

c ⟩ ≥ 1−O

( √
d√
Nc

)
, (8)

proving approximate alignment when Nc ≫ d.

A.3. Proof of Proposition 1: Generalization Bound
Proof. Using the margin-based Rademacher complexity
framework [1], for classifier h(x) = argmaxc[W

T
c ϕ(x) +

bc], the generalization error satisfies:

E ≤ C1√
N︸︷︷︸

Sample Complexity

+E
[
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x,y

min
c ̸=y

(Wy −Wc)
Tϕ(x)

]
︸ ︷︷ ︸
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+O
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d3/2
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)
.

(9)
The margin term is governed by the minimal prototype

distance δmin:

E
[
min
c̸=y

(Wy −Wc)
Tϕ(x)

]
≥ δmin

2
−O(

√
log |C|/N),

(10)
while the class imbalance ratio ρ amplifies the error through
biased gradients. Hence:

E ≤ C1√
N

+ C2ρ

(
1

δmin
+O(

√
log |C|/N)

)
. (11)

GPA maximizes δmin via geometric alignment, directly re-
ducing the dominant C2ρδ

−1
min term.
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B. Overview of Integrated LT-CIL Methods
We briefly introduce the six methods integrated into our
framework, highlighting their core strategies in addressing
long-tailed class-incremental learning.

LUCIR [5] LUCIR (Learning a Unified Classifier Incre-
mentally with Rebalancing) tackles catastrophic forgetting
by combining knowledge distillation with inter-class sepa-
ration constraints. It jointly optimizes for retaining consis-
tent features for old classes while ensuring that new classes
are well separated in the feature space.

PODNET [2] PODNET (Pooled Output Distillation Net-
work) leverages prototype distillation by extracting and
storing class prototypes from previous tasks. By aligning
current task features with these stored prototypes, POD-
NET effectively reduces interference from new tasks and
balances the learning of both old and new classes.

Finetune The Finetune strategy involves pre-training the
model on an initial dataset and subsequently fine-tuning
it on incremental data. Although straightforward, this ap-
proach is prone to severe forgetting of previously learned
classes, especially under long-tailed distributions, and is
typically used as a baseline for comparison.

L2P [9] L2P (Learning to Prompt) employs prompt tun-
ing by incorporating learnable prompts into the visual
model. These prompts serve as auxiliary inputs that enable
the model to adapt to new tasks with minimal modification
of the pre-trained parameters, thus mitigating the forgetting
effect.

DualPrompt [8] DualPrompt enhances prompt tuning by
introducing dual prompts at both the input level and within
internal network layers. This dual-prompt mechanism cap-
tures task-specific information more granularly, ensuring
better knowledge retention across incremental stages and
balancing performance between old and new tasks.

CODA-Prompt [7] CODA-Prompt combines contextual
information with prompt tuning to build context-aware
prompt modules. By exploiting inter-task contextual re-
lationships, it facilitates effective knowledge transfer and
generalization, thereby reducing catastrophic forgetting in
incremental learning scenarios.

GradRew [3] GradRew employs a two-stage gradient
reweighting strategy for long-tailed class-incremental learn-
ing: it first boosts underrepresented classes by scaling

their cross-entropy gradients according to historical magni-
tudes, then decouples plasticity and stability with separate
reweighting of cross-entropy and distillation losses, using
a distribution-aware adjustment to further emphasize rare
classes.

DynaPrompt [4] Dynamically Anchored Prompting
(DAP) keeps a single “general” prompt and, for each
task, learns a task-specific “boosting” anchor and updates
the general prompt by aligning it to both this anchor
and a “stabilizing” anchor summarizing past tasks, with a
task-size–based coefficient that flexibly trades off plasticity
and stability without any prompt pool or rehearsal.

EASE [10] Expandable Subspace Ensemble (EASE)
freezes the backbone and adds a lightweight adapter per
task to create task-specific subspaces, extracts prototypes in
each subspace, synthesizes missing old-class prototypes via
semantic similarity in the co-occurrence space, and ensem-
bles across all subspaces—reweighting logits to emphasize
the current task—without exemplars and within a fixed pa-
rameter budget.

RanPAC [6] RanPAC projects pre-trained features into
a higher-dimensional random (optionally nonlinear) basis
to approximate an isotropic Gaussian, then updates class
prototypes via a closed-form, ridge-regularized solution us-
ing additive Gram and prototype matrix updates, yielding a
rehearsal-free and parameter-fixed continual learner.

Each of these methods addresses the challenges of long-
tailed class-incremental learning from different perspec-
tives. In our work, we integrate the Geometric Prototype
Alignment (GPA) module into these frameworks to enhance
weight initialization and gradient flow, leading to significant
improvements in overall performance.
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