
Unleashing Vecset Diffusion Model for Fast Shape Generation
Supplementary Material

Zeqiang Lai1,2⋆ , Yunfei Zhao2,3⋆ , Zibo Zhao2,4 , Haolin Liu2 , Fuyun Wang1

Huiwen Shi2 , Xianghui Yang2 , Qingxiang Lin2 , Jingwei Huang2

Yuhong Liu2 , Jie Jiang2 , Chunchao Guo2† , Xiangyu Yue1†
1MMLab, CUHK 2Tencent Hunyuan 3VISG, NJU 4ShanghaiTech

https://github.com/Tencent-Hunyuan/FlashVDM

A. Implementation Details
Decoder Finetuning. The efficient vecset decoder illus-
trated in Section 3.2 is fine-tuned by freezing the vecset en-
coder. In [6], the decoder is made up of 8 self-attention
layers and 1 cross-attention layer. Since our design only
alters the cross-attention layer, we initialize self-attention
layers as before. Both self- and cross-attention layers are
trained during the finetuning. We use a constant learning
rate of 1×10−4 and a batch size of 256. The decoder could
quickly converge to a pretty good one with 300k steps, but
we find longer training to 800k steps converges better, lead-
ing to nearly identical performance to the original one.

Diffusion Distillation. The batch size is always 256
for different stages in progressive flow distillation. Follow-
ing [2, 3], the guidance distilled model is conditioned on
the guidance strength w, which is injected into the diffu-
sion backbone with a similar approach as timestep. Dur-
ing training, w is randomly select from w ∼ U [2, 8]. The
learning rate is set to 1 × 10−6. The model is trained with
20k steps. For step distillation, we set λ of huber loss to
1 × 10−3, and the guidance strength is set to a constant of
5.0. Following [2], we also use the skipping-step technique
with k = 10. We utilize multiphase [4] techniques to train
the model for 20k steps with 5 phases and a learning rate
of 1 × 10−6 and then finetune the model for 8k steps with
a learning rate of 1 × 10−7. The EMA decay rate is set to
0.999. For adversarial fine-tuning, we keep the distillation
loss of the previous stage and set the adversarial loss weight
to 0.1. The learning rate is set to 1×10−7 for generator and
1× 10−6 for discriminator. We train 5k steps for this stage.

B. Generalization Capability
Generalization to other architectures. The proposed
acceleration techniques are extendable. The hierarchical
volume decoding aims to speed up the implicit function

⋆ Equal contribution. † Corresponding authors.

Original 5 Steps FlashVDM 5 Steps Original 5 Steps FlashVDM 5 Steps

Michelengo ArchitectureTripoSG Architecture

Figure 1. Illustration of FlashVDM on different VDMs.

queries, which is general to most methods that apply im-
plicit representations (including SDF, NeRF, and UDF). The
adaptive KV selection aims to accelerate the querying op-
eration in the perceiver-style architecture. Therefore, this
method could speed up 2D, 3D, and video VAE built with
a cross-attention decoder. The distillation approach accel-
erates the diffusion (flow) model that learns with vector
set representation, potentially extending to other token set-
based generative models.

Generalization to other VDM. Thank you for the
suggestion. At the time of FlashVDM’s submission,
Hunyuan3D-2 was the best-performing open-source VDM,
significantly outperforming other available models. There-
fore, we chose it to validate our algorithms. As 3D genera-
tion has rapidly progressed, more open-source VDMs such
as TripoSG, Step1X-3D, HoloPart, and DetailGen3D have
become available, and the VAE component of FlashVDM
has also been integrated into some of these models. Here,
we include distillation results using the architectures of Tri-
poSG and Michelangelo—the former representing a differ-
ent DiT structure, and the latter a different VAE structure,
as shown in Figure 1.

C. Details of Hierarchical Volume Decoding
Effect of Dilate and tSDF. Fig. 2 compares the reconstruc-
tion with and without dilate and tSDF strategy. It can be

1

https://github.com/Tencent-Hunyuan/FlashVDM

Algorithm 1 Hierarchical Volume Decoding.

Input: An implicit function f(p) that evaluates the SDF at
position p. Target resolution r. Shape latents Z, tSDF
threshold η, isosurface threshold γ.

Output: A signed distance field (SDF) S ∈ Rr×r×r.
1: R = GetResolutions(r) ▷ List of cascade resolution.
2: PR[0] = GenGridPoints(R[0])
3: SR[0] = QueryField(PR[0], Z)
4: for i = 1 to len(R) do
5: P̂R[i] = FindIntersect(SR[i−1], γ)

6: P̂R[i] += FindNear(SR[i−1], η)

7: P̂R[i] = Dilate(P̂R[i])

8: PR[i] = Expand(P̂R[i])
9: SR[i] = QueryField(PR[i], Z)

10: end for
11: return SR[−1]

(a) Octree Volume Decoding (b) Octree Volume Decoding
w/o Dilate+tSDF

Figure 2. Comparison of reconstruction results with and without
dilate and tSDF strategy for hierarchical volume decoding.

seen that dilate+tSDF is mandatory for reconstructing com-
plete mesh without holes.

Implementation and Practical Consideration. The
overall pseudocode for hierarchical volume decoding is
shown in Algorithm 1. In practice, we set the tSDF thresh-
old η = 0.95 and the isosurface threshold γ = 0.0. The di-
late operation is implemented using a 3D convolution with
a kernel size of 3. At the final resolution, the total number
of points increases significantly, thus the FindNear oper-
ation would introduce many redundant points. To address
this, we omit the FindNear operation while Expand
twice, striking a balance between speed and quality. Practi-
cally, we find this strategy has minimal impact on the over-
all quality while speeding up slightly.

Activated Shape Token Count

Activated Shape Token Count

Fr
eq
ue
nc
y

Fr
eq
ue
nc
y

Region1

Region2

Figure 3. Histogram of activated token counts within different re-
gions, measured with 300 cases.

D. Details of Adative KV Selection
D.1. Analysis of Locality.
Activated Tokens Across Different Cases in the Same
Region. Fig. 3 presents a histogram of the activated shape
token count across 300 different test cases. As observed,
different regions and cases activate different sets of tokens.
This suggests that locality is case-dependent rather than
region-dependent. In other words, the same region in dif-
ferent cases does not consistently share a similar set of acti-
vated tokens.

Distribution of Activated Tokens Within a Case.
Fig. 4 shows the histogram of the total number of activated
tokens within a case, based on 200 cases. It can be observed
that most cases contain over 3000 tokens, with a maximum
of 3072 tokens. This further confirms that the phenomenon
of having fewer activated tokens per region is due to token
locality, rather than token redundancy.

IoU Changes with Respect to TopK Tokens. Fig. 5
shows the relationship between volume IoU and the num-
ber of TopK tokens, with all methods utilizing hierarchical
volume decoding. The results for Original and FlashVDM
differ due to the use of the efficient decoder. It can be
observed that FlashVDM(r4) closely matches the curve of
Original(r4), suggesting that our efficient decoder design
preserves most of the reconstruction ability. Additionally,
we notice that r16 performs significantly better than r4,
highlighting the strong locality of attention between queries
and shape tokens. Higher resolution corresponds to smaller
subvolumes, resulting in improved locality. Interestingly,
r16 maintains a similar IoU even with just 16% (512/3072)

Count of Activated Shape Token of All Regions

Fr
eq
ue
nc
y

Figure 4. Histogram of the number of total activated token within
all regions, measured with 200 cases.

of the tokens.

D.2. Implementation
Combination with Hierarchical Volume Decoding. In
Section 3.2, we briefly introduce the combination of Adap-
tive KV Selection (AKVS) and hierarchical volume decod-
ing. Here, we provide a more detailed explanation of the
implementation and background. AKVS can be naively im-
plemented as shown in Algorithm 2. The algorithm con-
sists of four main steps: sampling queries, computing the
mean attention score, selecting Top-K, and performing at-
tention. Since the attention score is computed from the sam-
pled queries, we need to feed the queries subvolume by sub-
volume, with queries being spatially close to one another, to
keep locality.

For the original volume decoding, this can be eas-
ily achieved by changing the chunk-splitting method to a
subvolume-splitting method, as the original method also
uses chunk-splitting to reduce memory requirements. How-
ever, to maintain locality, the chunk size must be much
smaller, which may be too small for efficient GPU acceler-
ation. Additionally, with hierarchical volume decoding, the
number of queries in each subvolume can be even smaller.
To address this, we propose to pre-divide the subvolume and
concatenate all queries of each subvolume. Instead of pro-
cessing each subvolume sequentially, we concatenate mul-
tiple subvolumes and process them in parallel until cross-
attention is reached. This approach helps reduce the run-
ning time for MLP and other linear layers in the decoder.

E. Details of Diffusion Distillation
In Section 4.3, we provide a brief ablation study of the pro-
posed progressive flow distillation with a case study. Here,
we present a more detailed comparison with additional test
cases and also include ablations of Huber loss and Phase 1
fine-tuning.

Guidance Distillation Warmup. Fig. 6 shows the re-
sults without guidance distillation warmup. We observe sig-
nificant degradation in results when guidance distillation is

0.88

0.93

0.98

512 1024 1536 3072

Original (r4)

FlashVDM (r4)

FlashVDM (r16)

Vo
lu

m
e

Io
U

Number of TopK token

Figure 5. The graph shows the relationship between volume IoU
and the number of TopK tokens. r4 denotes the volume is divided
into 43 subvolumes, and r16 denotes 163 subvolumes.

Algorithm 2 Adaptive KV Selection.

Input: Query Q ∈ RN×D, Key K ∈ RM×D, and Value
V ∈ RM×D of cross attention, the number of queries
n ≪ N for estimating TopK correlated KV.

Output: Attention result O ∈ RN×D.
1: Q̂ = Sample(Q), Q̂ ∈ Rn×D

2: M = Mean(Q̂× K̂T), M ∈ Rn×M

3: K̂, V̂ = TopK(M,K, V), K̂, V̂ ∈ Rk×D

4: O = Attention(Q, K̂, V̂)
5: return O

omitted, confirming the effectiveness of our strategy.
Huber Loss vs L2 Loss. Fig. 7 shows a visual compari-

son between models trained with L2 and Huber loss. While
L2 loss generates reasonable results, the quality is notice-
ably inferior to that of the model trained with Huber loss.
For example, certain structures, like the radio and several
houses, are broken in the L2 model. We hypothesize that it
is because Huber loss is less sensitive to outliers, thus stabi-
lizing the training and improving the results.

EMA of Target Network. Fig. 8 compares models
trained with and without EMA. Both models were fine-
tuned from a guidance-distilled model using consistency
flow distillation, with no Phase 1 or adversarial fine-tuning.
It can be seen that the meshes are broken without EMA,
highlighting the importance of EMA for stability.

Phase 1 Fine-tuning. During consistency flow distilla-
tion, we follow PCM [4] to divide the total trajectory into 5
phases and force the model to predict different targets at
each phase. However, there is a training-test gap as the
model needs to predict final target during the inference. To
address this, we propose Phase 1 fine-tuning after Phase 5
pretraining. We empirically find that this strategy slightly
improves performance, as shown in Fig. 9.

Adversarial Fine-tuning. The comparison between
models with and without adversarial fine-tuning is shown
in Fig. 10. It is evident that adversarial fine-tuning helps

improve surface smoothness, corrects detail generation, and
fixes mesh holes.

Effect of Sampling Steps. As shown in Fig. 11, our
method demonstrates the ability to generate rough results
with just 2 steps, and simple objects can be effectively gen-
erated within 3 steps.

F. More Results
Shape Generation Results. Fig. 12 presents a set of shape
generation results from Hunyuan3D-2 Turbo, which has
been distilled using the proposed FlashVDM framework.
Our model achieves fast generation with only 5 diffusion
sampling steps and ultra-fast decoding, while maintaining
high-quality meshes across a variety of categories.

Compatibility with Texture Generation. Fig. 13 show-
cases texture generation results for meshes produced by
Hunyuan3D-2 Turbo, distilled with FlashVDM. It is evident
that the meshes generated by our method are fully compati-
ble with texture generation, demonstrating its versatility.

Comparison with Other Methods. Fig. 14 compares
FlashVDM with other fast 3D generation methods. The re-
sults highlight that our method consistently outperforms ex-
isting approaches across a broad range of input types.

G. Limitations and Future Works.
In this work, we have significantly accelerated both VAE
decoding and diffusion sampling. Despite these improve-
ments, there are still areas that could be further enhanced.
For instance, our PyTorch implementation contains sev-
eral indexing operations, which can slow down the GPU
pipeline. Operator fusion and more efficient memory ac-
cess strategies could be promising directions for optimiza-
tion. Additionally, exploration of locality of vecset would
also be an interesting direction. Regarding diffusion sam-
pling, single-stage distillation may be preferable, as the cur-
rent multi-stage approach is complex and introduces cas-
cade errors, which limit its performance potential. Fur-
thermore, while our investigation of adversarial finetuning
shows promising results, further research could focus on
continuously utilizing real 3D data with adversarial finetun-
ing or even reinforcement learning, a direction we believe
holds significant promise. Lastly, as VAE inference time is
reduced, the proportion of time spent on diffusion sampling
increases. This suggests that exploring one-step distillation
could be a valuable avenue for future research.

w/ Guidance
Distillation

(Ours)

w/o Guidance
Distillation

Figure 6. Visual comparison of models with and without guidance distillation warmup. The adversarial fine-tuning and Phase1 fine-
tuning are not adopted. It demonstrates that the guidance distillation warmup is essential for successful distillation.

Huber
Loss

(Ours)

L2
Loss

Figure 7. Visual comparison of models trained with L2 and huber loss. The adversarial fine-tuning and Phase1 fine-tuning are not
adopted. It demonstrates that the huber loss is significantly better than l2 loss, which we hypothesis that is due to huber loss is less sensitive
to outliers so that stablizes the training and makes results better.

w/ EMA
(Ours)

w/o EMA

Figure 8. Visual comparison of models trained with and without EMA. The adversarial fine-tuning and Phase1 fine-tuning are not adopted.
It demonstrates that the meshes tend to be broken without EMA.

w/ Phase1
Finetuning

(Ours)

w/o Phase1
Finetuning

Figure 9. Visual comparison of models with and without guidance distillation warmup. The adversarial fine-tuning and Phase1 fine-
tuning are not adopted. It demonstrates that the guidance distillation warmup is essential for successful distillation.

w/ Adv
(Ours)

w/o Adv

Figure 10. Visual comparison of models with and without adversarial finetuning. All other distillation stages are used. It demonstrates
that the predicted meshes are more accurate and smooth after adversarial finetuning.

1 step

2 steps

4 steps

3 steps

Input
Image

N/A N/A

5 steps

8 steps

10 steps

Figure 11. Visual comparison of FlashVDM generation results with different sampling steps.

Figure 12. Shape generation results of Hunyuan3D-2 Turbo distilled with the proposed FlashVDM. Image prompts are generated by
HunyuanDiT [1]. The number of inference steps is 5.

Input Image Textured Mesh Input Image Textured Mesh Input Image Textured Mesh Input Image Textured Mesh

Figure 13. Texture generation results of Hunyuan3D-2 Turbo distilled with the proposed FlashVDM and Hunyuan3D-Paint-2 [5]. Image
prompts are generated by HunyuanDiT [1]. The number of inference steps is 5.

Input Image SF3D SPAR3D TripoSR FlashVDM

Figure 14. Comparison between FlashVDM (Hunyuan3D-2 Turbo) 5 steps and other fast 3D generation methods.

References
[1] Zhimin Li, Jianwei Zhang, Qin Lin, Jiangfeng Xiong, Yanxin

Long, Xinchi Deng, Yingfang Zhang, Xingchao Liu, Min-
bin Huang, Zedong Xiao, Dayou Chen, Jiajun He, Jiahao Li,
Wenyue Li, Chen Zhang, Rongwei Quan, Jianxiang Lu, Ji-
abin Huang, Xiaoyan Yuan, Xiaoxiao Zheng, Yixuan Li, Ji-
hong Zhang, Chao Zhang, Meng Chen, Jie Liu, Zheng Fang,
Weiyan Wang, Jinbao Xue, Yangyu Tao, Jianchen Zhu, Kai
Liu, Sihuan Lin, Yifu Sun, Yun Li, Dongdong Wang, Ming-
tao Chen, Zhichao Hu, Xiao Xiao, Yan Chen, Yuhong Liu,
Wei Liu, Di Wang, Yong Yang, Jie Jiang, and Qinglin Lu.
Hunyuan-dit: A powerful multi-resolution diffusion trans-
former with fine-grained chinese understanding, 2024. 9, 10

[2] Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang
Zhao. Latent consistency models: Synthesizing high-
resolution images with few-step inference. arXiv preprint
arXiv:2310.04378, 2023. 1

[3] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik
Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans. On
distillation of guided diffusion models. In CVPR, 2023. 1

[4] Fu-Yun Wang, Zhaoyang Huang, Alexander Bergman,
Dazhong Shen, Peng Gao, Michael Lingelbach, Keqiang Sun,
Weikang Bian, Guanglu Song, Yu Liu, et al. Phased consis-
tency models. Advances in Neural Information Processing
Systems, 37:83951–84009, 2025. 1, 3

[5] Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao
Liang, Eric I Chang, and Yan Xu. Large scale image com-
pletion via co-modulated generative adversarial networks. In
ICLR, 2021. 10

[6] Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin
Liu, Shuhui Yang, Yifei Feng, Mingxin Yang, Sheng Zhang,
Xianghui Yang, et al. Hunyuan3d 2.0: Scaling diffusion mod-
els for high resolution textured 3d assets generation. arXiv
preprint arXiv:2501.12202, 2025. 1

	Implementation Details
	Generalization Capability
	Details of Hierarchical Volume Decoding
	Details of Adative KV Selection
	Analysis of Locality.
	Implementation

	Details of Diffusion Distillation
	More Results
	Limitations and Future Works.

