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1. Introduction
Our supplementary materials offer additional details and ex-
perimental results that further support our method. These
can be summarized as follows:
• We provide detailed information of the training process

and our method;
• We conduct further ablation studies to validate the effec-

tiveness of our method;
• We illustrate more qualitative and quantitative results to

demonstrate the superior performance of the proposed
method.

2. Detail information of the training process
2.1. Estimation of Entropy
Following the UNSB [4], we employ mutual information to
estimate the entropy of a general random variable as fol-
lows:

I(X,Y ) = H(X)−H(X | Y ), (1)

where H(X) denotes the entropy of X , I(X,X) denotes
the mutual information, and H(X | Y ) is the conditioned
entropy. When we set Y to X , Eq. 1 can be transformed
into:

I(X,X) = H(X)−H(X | X), (2)

where H(X | X) = 0 since knowing X leaves no un-
certainty about X . Thus, the mutual information I(X,X)
equals the entropy H(x).

Inspired by the work [1], we employ a neural network Tθ

parametered by θ ∈ Θ to approximate mutual information
to arbitrary accuracy as follows:

IΘ(X,Z) := sup
θ∈Θ

(
EPXZ

[Tθ]− logEPX⊗PZ
[eTθ ]

)
. (3)

Following this paradigm, we estimate the entropy
H(qθ(x(ti), x1)) by setting X = Z.

2.2. Network architecture
In this section, we provide a detailed description of the net-
work architecture. Specifically, we employ a UNet used
in [3] as our generator G : qθ(x1 | x(ti)). Differently,
our generator does not utilize dynamic snake convolution,
as it does not enhance the ability to capture fine details in
hazy images. Moreover, we take the time step ti as input
along with x(ti) since our generator shares a parameter for
all time steps ti.

Figure 1. Illustration of PatchNCE regularization.

For the discriminator, we employ a Markovian discrimi-
nator from [4] as the local discriminator and a CLIP-based
discriminator [5] as the global discriminator. Additionally,
we employ a UNet employed in [6] as the transmission map
refined network. The architecture of Tθ, which is used to
estimate entropy, is the same as the local discriminator.

2.3. PatchNCE Regularization
As illustrated in Figure 1, a representative patch from the
dehazed image (denoted by a yellow border) serves as an
anchor, while its spatially corresponding patch in the hazy
input (marked with a red border) is designated as the pos-
itive sample. Concurrently, all non-corresponding patches
within the hazy image (highlighted with blue borders) are
treated as negative samples. This contrastive formulation
effectively maintains structural fidelity by encouraging the
generator to preserve original image textures while remov-
ing haze artifacts.

2.4. High-Frequency Detail Regularization
We introduce high-frequency detail regularization, includ-
ing Discrete Fourier Transform loss, SSIM loss, and So-
bel Gradient loss. Specifically, we convert both hazy and
dehazed images into the frequency domain through Dis-
crete Fourier Transform (DFT), and extract high-frequency
components. These components are then transformed back
to the spatial domain via Inverse DFT (IDFT), establish-
ing a high-frequency regularization that ensures the high-
frequency details of the dehazed image match those of the
original image. Moreover, we employ SSIM [2] and So-
bel Gradient loss to ensure that the restored details remain
structurally aligned with the source image’s inherent char-
acteristics. The Discrete Fourier Transform loss and Sobel
Gradient loss can be expressed as:

LF = L2(F (x0), F (x1(x(ti)))), (4)

LS = L2(S(x0), S(x1(x(ti)))), (5)

where F and S denote the Discrete Fourier Transform and
Sobel Gradient operation. x0 and x1(x(ti)) denote the hazy



Intervals 1 3 5 10

FID ↓ 75.339 73.171 69.796 66.541
NIQE ↓ 3.895 3.789 3.743 3.751

MUSIQ ↑ 56.764 55.880 59.256 58.062
MANIQA ↑ 0.134 0.131 0.150 0.132

PSNR ↑ 18.284 18.508 18.829 18.617
SSIM ↑ 0.820 0.825 0.838 0.839
LPIPS ↓ 0.293 0.276 0.223 0.251

VSI ↑ 0.948 0.948 0.961 0.958

Table 1. Ablation study of number of intervals.

image and generated dehazed image. The use of SSIM loss
is the same as in reference [3].

2.5. Training Details

We implement our method within the Pytorch framework
using Python 3.10, utilizing the Adam optimizer with a
batch size of 4 for network training. We train our frame-
work for 100K iterations, with β1 set to 0.9, β2 set to 0.999,
and a learning rate of 2 × 10−5. All experiments are con-
ducted on a single 3090 GPU. The training sample is re-
sized to 256 × 256, and we implement horizontal flipping
for data augmentation. For SB training and simulation, we
discretize the unit interval [0, 1] into 5 intervals with uni-
form spacing. Additionally, τ is set to 0.01, λSB is set to 1,
λp is set to 1, λNCE is set to 1, λphy is set 0.5, and λhfd is
set to 0.5.

3. Ablation Study

3.1. Ablation Study of Number of Intervals

To investigate the impact of the number of intervals, we
conduct experiments with varying numbers of intervals. As
shown in Table 1, setting this parameter to 5 yields the best
overall quality performance. Additionally, compared to set-
ting it to 10, using 5 intervals results in a reduction in train-
ing costs, making it a more efficient choice.

3.2. Ablation Study of Weight

We conduct a series of ablation studies to validate the im-
pact of varying weights of detail-preserving regularization,
including physical prior regularization (PPR) and high-
frequency detail regularization (HFDR). It is important to
note that PatchNCE regularization is essential in our frame-
work. As illustrated in Figure 2 and Figure 3, while differ-
ent weight settings may outperform our method on certain
metrics, from the perspective of overall image quality, set-
ting the weights of PPR and HFDR to 0.5 yields the most
suitable results.

Figure 2. Ablation study of Weight.

Figure 3. Ablation study of Weight.

3.3. Ablation study of NFEs
The trained generator can produce dehazed images from
any given x(ti). This capability allows us to iteratively
generate dehazed images with varying numbers of function
evaluations (NFEs) using the trained generator and Eq. 6.

p(x(tj+1) | x(tj), x1(x(tj))) ∼
N (x(tj+1);µ(tj+1), σ(tj+1)),

µ(tj+1) = s(tj+1)x1(x(tj)) + (1− s(tj+1))x(tj),

σ(tj+1) = s(tj+1)(1− s(tj+1))τ(1− tj)I.

(6)

Consequently, we investigate the relationship between
NFEs and the quality of the generated images. While a
higher NFE is generally more advantageous for image trans-
lation tasks, as validated in UNSB [4], tasks requiring strict
pixel-wise alignment, such as image dehazing, may suf-



Figure 4. Ablation study of NFEs.

URHI IHAZE

Method FID↓ NIQE↓ MUSIQ↑ MANIQA↑ PSNR↑ SSIM↑ LPIPS↓ VSI↑
DCP 63.701 4.129 55.966 0.143 11.055 0.592 0.374 0.930

MBFormer 55.023 4.174 57.293 0.163 16.092 0.776 0.232 0.939
C2PNet 55.970 4.368 56.542 0.161 16.427 0.780 0.234 0.944
KANet 56.921 3.839 57.774 0.144 16.667 0.759 0.435 0.953

DEANet 56.606 4.233 56.306 0.155 10.191 0.459 0.420 0.913
Diff-Plugin 54.669 4.555 53.913 0.122 15.513 0.756 0.267 0.943
OneRestore 56.011 4.476 53.698 0.131 16.537 0.788 0.224 0.942

SGDN 65.937 5.225 46.817 0.100 16.074 0.775 0.239 0.959
CUT 53.511 4.299 58.224 0.147 14.456 0.646 0.379 0.919

UNSB 47.294 4.232 55.064 0.153 16.486 0.649 0.360 0.936
YOLY 60.651 4.289 54.896 0.147 15.555 0.704 0.447 0.943

RefineDNet 59.701 3.668 58.540 0.138 16.571 0.765 0.291 0.945
D4 58.877 4.372 55.958 0.160 13.844 0.605 0.281 0.940

D4+ 59.743 3.942 55.807 0.147 15.072 0.726 0.299 0.950
Ours 46.613 3.813 60.865 0.170 16.764 0.766 0.201 0.951

Table 2. Quantitative results on URHI and IHAZE. The best results are denoted in bold, and the second-best results are underlined.

fer from decreased fidelity with increased NFE. As shown
in Figure 4 and Figure 5, increasing the NFE can lead to
greater distortion, thereby reducing the overall quality of
the dehazed images. To strike a balance between percep-
tual quality and distortion in the generated dehazed images,
we opt for an NFE value of 1. This choice ensures opti-
mal fidelity and minimizes unwanted distortions, resulting
in high-quality dehazed images.

4. Experimental Results

In this section, we provide additional qualitative and quan-
titative results to further demonstrate the superior perfor-
mance of the proposed method.

Table 2 illustrates the quantitative results of URHI and
IHAZE. Figures 6, 7, 8, 9, 10, 11, and 12 present visual
comparisons with several state-of-the-art methods on Fat-
tal’s dataset, Haze2020, RTTS, and URHI. As shown, the
proposed method achieves satisfactory performance, pro-
ducing high-quality images with natural color and high con-
trast. For IHAZE, our method does not achieve optimal per-

Figure 5. Ablation study of NFEs.

formance on all metrics. This is due to the fact that IHAZE
is an indoor hazy dataset generated using a haze machine,



Method Params↓ FLOPs↓ mAP↑
DCP - - 0.6489

MBFormer 77.43M 88.1G 0.6480
C2PNet 7.17M 352.9G 0.6462
KANet 55.25M 4.4G 0.6441

DEANet 3.65M 34.1G 0.6429
Diff-Plugin 942.61M 1.8T 0.6255
OneRestore 5.98M 11.3G 0.6418

SGDN 10.97M 52.9G 0.6395
CUT 11.37M 64.1G 0.4618

UNSB 14.68M 62.7G 0.6029
YOLY - - 0.6122

RefineDNet 65.80M 75.4G 0.6400
D4 10.70M 2.2G 0.6398

D4+ 10.70M 2.2G 0.6425
Ours 15.83M 15.8G 0.6506

Table 3. Quantitative results of model efficiency.

while our training data consists exclusively of outdoor im-
ages. Given that haze predominantly occurs in outdoor en-
vironments in real-world scenarios, we believe our method
remains the most effective for processing real-world hazy
images.

Moreover, we compare the proposed method with the
others in terms of model parameters, and FLOPs (Table 3).
We do not include DCP and YOLY in this comparison be-
cause DCP is a prior-based method, and YOLY is a training-
free method that requires hundreds of iterations to generate
a dehazed image, taking several minutes. As evident from
the table, although not the most optimal method in terms of
efficiency, our model’s number of parameters and FLOPs
surpass those of most other approaches. Our approach en-
sures the best performance while achieving efficient dehaz-
ing. Additionally, we show the detection results of RTTS
detected by YOLO, validating that our dehazed images per-
form well in downstream tasks. This demonstrates the prac-
tical benefits of our method in real-world applications.
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Figure 6. Visual comparison of samples from Fattal’s dataset.



Figure 7. Visual comparison of samples from Haze2020.



Figure 8. Visual comparison of samples from Haze2020.



Figure 9. Visual comparison of samples from RTTS.



Figure 10. Visual comparison of samples from RTTS.



Figure 11. Visual comparison of samples from URHI.



Figure 12. Visual comparison of samples from URHI.
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