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Abstract

”What cannot be measured cannot be improved” while
likely never uttered by Lord Kelvin, summarizes effectively
the driving force behind this work. This paper presents
a detailed discussion of automated metrics for evaluat-
ing structured 3D reconstructions. Pitfalls of each met-
ric are discussed, and an analysis through the lens of ex-
pert 3D modelers’ preferences is presented. A set of sys-
tematic ”unit tests” are proposed to empirically verify de-
sirable properties, and context aware recommendations re-
garding which metric to use depending on application are
provided. Finally, a learned metric distilled from human
expert judgments is proposed and analyzed. The source
code is available at https://github.com/s23dr/
wireframe-metrics-iccv2025.

1. Introduction
Benchmarks have been key drivers of progress in computer
vision; the canonical example is certainly ImageNet [31],
but prominent examples abound beyond image classifica-
tion: object tracking [21, 23], image retrieval [4, 30], image
matching [20], 6D pose estimation [15], optical flow [27],
etc. Benchmarks have three main components – the data,
the protocol, and the metrics. While the data is the single
most important component, progress is hard without being
able to answer the question, ”progress on what?” Good met-
rics are the quantitative answer to this question. While met-
rics do not need to be perfect, their gradient should point
progress in the right direction.

We consider an area of structured and semi-structured
reconstruction, which has recently gained popular-
ity [1] [19] [5]. Given a set or sequence of sensory data,
such as ground images [22], satellite images [9], or aerial
LiDAR [33], the goal is to produce a wireframe or a CAD
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GT WF1 WF2 WF3

Metric/wireframe GT WF1 WF2 WF3

Vertex F1 ↑ 1.00 0.56 0.91 0.18
Edge F1 ↑ 1.00 0.19 0.71 0.00
Jaccard Distance ↓ 0.00 0.00 0.33 1.00
WED ↓ 0.00 2.32 0.52 1.82
WED S23DR ↓ 0.00 2.69 0.59 1.63
Graph Spectral ↓ 0.00 377.93 577.49 1603.32

Figure 1. A motivating example for this work. While humans tend
to sort the wireframes from best to worst in the presented order,
popular metrics (defined in Sec 3) sort them differently, sometimes
completely inverting the order. Top, left to right: GT – ground
truth wireframe, WF1 – wireframe with edges split into several
segments, maintaining geometrical and topological accuracy, WF2
– wireframe with missing vertices and edges, WF3 – wireframe
with only one correct vertex. Bottom: distances between GT and
respective wireframe. Numbers that change sorting are in red.

model of a building or other structure. The modeling
output is presented as a spatial graph with vertices (such as
roof apex point, etc.) and edges (ridge line, etc.). Several
datasets have been recently proposed [22, 33] for the task.
The issue is that hardly a pair of publications in the area
use the same metric to evaluate quantitative results. Some
use recognition metrics such as precision and recall on
vertices and edges [25] or more enhanced versions such
as Structured Average Precision [26, 36]. Others opt for
graph-based metrics, such as the Wireframe Edit Distance
(WED) [8, 24, 25]. Finally, some methods treat the problem
similarly to point cloud registration and report Chamfer
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Distance (CD) [10, 16, 17]. Other related fields, like struc-
ture from motion, use downstream metrics, such as image
generation quality [6] and camera pose accuracy [20]. One
aspect of the difficulty is related to the fact that structured
reconstructions often have different goals. For instance,
one purpose of the reconstructed wireframes is to represent
building plans and answer questions such as ”what is the
area of the bedroom?” Within this formulation, a black-box
model, e.g. visual-and-language model (VLM), which
takes an image as an input and outputs a correct estimate,
would be a perfect match. On the other hand, a floorplan
or a blueprint has value for record-keeping, planning, and
other applications that cannot be easily replaced with a
black-box model.

Finally, many existing metrics, while useful, often fail
to deliver value in practice when comparing two imperfect
estimations, and designing metrics that effectively compare
a pair of ”very good” and a pair of ”very bad” solutions at
the same time is also non-trivial.

Moreover, there is evidence [22] that some metrics can
be ”hacked” or exploited in such a way that obviously bad
solutions have better scores than flawed but ultimately quite
reasonable solutions. Such examples include a number
of corner cases, which can cause existing metrics to be-
come useless in practical scenarios. For instance, in the
case where long edges are split into smaller, yet perfectly
collinear, pieces, e.g. Fig. 1, most commonly used metrics,
such as edge F1, vertex F1, and Wireframe Edit Distance,
fail completely and prefer much worse solutions.

This paper makes the following contributions:

(1) Measure the perceived quality of reconstructions by hu-
man domain experts, and infer a global ranking of all
structured reconstructions. This ranking is then com-
pared to the ranking given by all metrics.

(2) Show how well existing metrics agree with human pref-
erences and how much they correlate with each other.

(3) Propose a set of ”unit-tests” for testing the properties of
the metrics.

(4) Introduce a simple learned metric, which correlates
well with human judgment.

(5) Make recommendations of which metrics to use de-
pending on the use case.

2. What do we actually need from wireframe
comparison metrics?

We consider semi-automated 3D modeling as a target task
with enough generality to drive progress that can smoothly
scale to fully-automated modeling, but is still tractable and
reliable for commercial applications today.

For this task, the wireframe representation is estimated
from some ”raw” inputs such as images or a LiDAR point
cloud and then transferred to human experts to (1) approve

Figure 2. Wireframe ranking interface for human annotators.

it, (2) correct it and then approve, (3) reject and create the
model from scratch manually.

We argue that such task formulation creates an implicit
usefulness ranking over reconstructions (and thereby over
reconstruction methods). Otherwise, without considering
human involvement, everything becomes binary – either the
model is good enough to be used (e.g. for 3D printing, mea-
surement extraction), or it is not.

For this reason, we consider the following experimen-
tal setup to benchmark wireframe comparison metrics. A
pool of professional 3D modelers, whose everyday job is
creating CAD-like models from raw data such as images,
is asked to rank pairs of wireframes. An example of the
ranking setup is shown in Fig. 2. All wireframes are su-
perimposed with ground truth models, and annotators are
provided tools allowing them to translate, scale, and rotate
the wireframes in 3D.

The wireframes are drawn from two pools, as described
below. We then evaluate how the existing metrics agree with
the judgment of professional human 3D modeling experts.

Pool1– S23DR. We acquire a representative set of S23DR
challenge entries [22] as well as a PC2WF [24] baseline.
These wireframes were algorithmically (and with the help
of deep-learning models) reconstructed from multiview in-
puts with the goal of minimizing a variant of WED. We
include the top-10 entries with team names used as iden-
tifiers. The ground truth models were created by human
experts and have undergone significant validation. The in-
put data were captured by users on mobile phones in North
America.

Pool2 — Corrupted ground truth. We apply one of the
following operations on the ground-truth wireframes from
Pool 1 – examples are shown in Fig. 3:
• (deform {low, medium, high}) Split the edge into sev-

eral edges and perturb the positions of the vertices with-
out breaking the topology.

• (perturb {low, medium, high}) Split the vertex into sev-



Figure 3. Examples of corrupted ground truth wireframes,
used for wireframe ranking. Left to right: GT, deformed
edges (deform medium), vertex duplication and random move-
ment (perturb medium), edge addition (add low), edge dele-
tion(remove low).

eral ones. Each of the new vertices is randomly shifted
from the ground truth. If the original vertex was con-
nected to multiple neighbors, randomly decide which of
the new vertices is connected to which neighbors.

• (add {low, medium, high}) Randomly add wrong edges
to the model.

• (remove {low, medium, high}) Randomly delete some of
the vertices and all the edges connected to them.

Unit-tests & Desired properties of dissimilarity scores:
In addition to being aligned with human judgment, we also
propose a set of ”unit-tests” for the metrics, which we be-
lieve are reasonable, and check if the dissimilarity scores
satisfy these requirements. We design tests for the for-
mal properties of mathematical metrics as well as additional
properties relevant to evaluating dissimilarity in structured
reconstruction tasks: For example, if wrong edges E1 and
E2 are added to the GT model, the metric should score the
resulting wireframe lower than if E1 or E2 are added sepa-
rately.

Identity of Indiscernibles: This property ensures that
identical inputs receive a dissimilarity score of zero, indi-
cating perfect similarity. For any reconstruction x, a metric
d satisfies this property if d(x, x) = 0.

Symmetry: A symmetric metric produces the same dis-
similarity score regardless of the order of the inputs. For
reconstructions x and y, a metric satisfies symmetry if
d(x, y) = d(y, x).

Triangle Inequality: The triangle inequality ensures
that for any three reconstructions x, y, and z, the dissim-
ilarity between x and z is less than or equal to the sum of
dissimilarities between x and y, and y and z. This relation-
ship is expressed as d(x, z) ≤ d(x, y) + d(y, z).

Monotonicity: This property describes how the dissim-
ilarity score behaves when components (such as vertices or
edges) are removed from a reconstruction. A metric sat-
isfies monotonicity if the dissimilarity score does not in-
crease when wrong vertices or edges are deleted. Similarly,

the dissimilarity must not increase when correct vertices or
edges are added.

Quasi-proportionality: This property holds when the
metric changes smoothly under perturbations. This is evalu-
ated by moving random vertices with small increments and
checking the variance of the differences in the score. We
use the following perturbations to simulate better or worse
reconstructions: (i) remove correct edges from the ground
truth wireframe; (ii) add wrong edges to the ground truth
wireframe; (iii) disconnect ground truth edges; (iv) remove
correct vertices; (v) move ground truth vertices to the wrong
location. For every perturbation, we apply it 10 times and
declare an example monotonic if it is strictly increasing (or
decreasing as appropriate) for those continuous 10 pertur-
bations.

3. Metrics
The following metrics are considered:

WED – Wireframe Edit Distance was proposed by
Liu et al. [24] as an extension of the Graph Edit Distance
(GED) [32]. GED quantifies the distance between two
graphs as the minimum number of elementary operations
(inserting and deleting edges and vertices) required to trans-
form one graph into another. WED extends this to wire-
frames (graphs with node positions and edge lengths) and
proposes a cheap approximation to the NP-Hard problem
of computing the optimal sequence of edits. Concretely,
an assignment is first computed between the predicted and
ground-truth vertices, and a cost is paid proportional to the
distance between matched vertices. Next, unmatched ver-
tices are deleted, and missing vertices are inserted (paying
a cost proportional to the number of inserted/deleted ver-
tices). Finally, given the vertex assignments, missing edges
are inserted and extra edges deleted, paying a cost propor-
tional to their length. In order to use WED, one needs to
decide on the cost of insertion and deletion of the vertices,
as well as the order of operations, and method of comput-
ing vertex/edge assignment. WED was used to determine
the winner in the Building3D [33] and S23DR [22] CVPR
Challenges.

ECD – Edge Chamfer Distance. ECD is commonly used
in structured reconstruction papers [10, 16, 17]. We con-
sider a family of chamfer-like metrics between two point
sets A and B sampled from wireframe edges. The general
form is:

d(A,B) := inf
πAB :A→B

Ea∈A [f(a, πAB(a))] , (1)

where πAB represents an assignment from elements in A to
elements in B, and f is typically an ℓp norm of the differ-
ence between the inputs. Different constraints on πAB yield
different metrics:



• The classical chamfer distance corresponds to πAB(a) =
argminb∈B f(a, b), i.e. nearest neighbor matching.

• The most constrained version requires πAB to be a bijec-
tive matching, which can be computed via the Hungarian
algorithm and is equivalent to the Earth Mover’s Distance
when f is the ℓp norm.

Length Weighted Spectral Graph Distance – SD incorpo-
rates both topological and geometric information by fram-
ing graph (wireframe) distance in terms of distances be-
tween the spectra of weighted graph Laplacians. We mea-
sure the spectral distance using the 2-Wasserstein metric be-
tween the eigenvalue distributions:

SD(G1, G2) := W2(λ(L1), λ(L2)) , (2)

where λ(L) denotes the spectrum of the Laplacian L. For a
graph G = (V,E), the weighted graph Laplacian is defined:

L := D −A (3)

where D is the weighted degree matrix (|V | × |V | diag-
onal matrix with each diagonal entry containing the sum
of the lengths of edges incident to that vertex), and A is
the weighted adjacency matrix (|V | × |V | with Aij =
∥coord(Vi)− coord(Vj)∥2 if (i, j) ∈ E and 0 otherwise).
Corner and Edge Metrics. We also compute precision,
recall, and F1 scores for both corners and edges. For cor-
ners, we consider a prediction correct if it lies within a dis-
tance threshold of a ground truth corner. For edges, we use
the Hausdorff distance between line segments to determine
matches. These metrics provide an intuitive measure of the
topological accuracy of the predicted wireframes.
Hausdorff Distance measures the maximum of minimal
distances between two sets of points. For wireframes, we
sample points along the edges and compute the Hausdorff
distance between these point sets, providing a measure of
geometric similarity that considers both corner positions
and edge geometry.
Intersection over Union is a popular metric in a wide
range of fields, e.g. segmentation, tracking, object detec-
tion. However, it is rarely used to assess the quality of wire-
frame reconstructions. We extend the definition of the wire-
frame as a set of cylinders with a fixed radius (the only hy-
perparameter of this metric) and define the metric as an IoU
between two sets of cylinders, given by two wireframe re-
constructions that need to be compared. An approximation
via point sampling is considered: sample random points
from both sets of cylinders and compute the average number
of times when the point falls inside of both sets of cylinders.
The Jaccard distance is reported between two sets.
Visual-and-language models could potentially be used for
this task. We consider 4o, o1 [13], Grok 2 [34], qwen-
2.5 [18], pixtral 12b [2], claude 3.5 and 3.7 [3], gemini 2.0

and gemini 2.0-flash [12] models via OpenRouter [28]. The
prompts are provided in the supplementary.
Learned metric. We also explore how to distill the hu-
man annotations directly into a metric. To this end, we
propose learning a metric with transfer learning. First,
reconstruction and ground-truth wireframes are plotted in
3D and rendered from a canonical viewpoint (denoted ri).
Then, DiNOv2 [29] features are extracted from those ren-
derings and an MLP-based regression head is then trained
to regress scores based on the extracted features (g(ri). A
Bradley–Terry [7] probability model is assumed and pair-
wise annotations are used to supervise the training by min-
imizing a binary cross-entropy loss with a batch size of 16.
10-fold cross validation splits the data such that the sets of
ground truth structures and reconstruction methods used in
the training and test sets are disjoint. We observe average
accuracy across the folds of 76% where a prediction is con-
sidered correct if g(rwinner) > g(rloser).

4. Experiments

Human wireframe ranking and its consistency. To de-
termine which of the metrics under consideration are most
appropriate, we employ three groups of people to provide
pseudo-ground-truth rankings of the solutions. The first and
biggest group is made up of human 3D modeling experts
who professionally create CAD models of objects from
photos. The second group is computer vision researchers,
and finally, the third group is people who do not work with
3D modeling in their daily lives (designers). There are 11,
4, and 3 people in those groups respectively.

Annotators were shown pairs of reconstructions of the
same structure, and asked to specify which reconstruc-
tion most closely matched the superimposed correspond-
ing wireframe. An example of the user interface is shown
in Fig. 2. Annotators were able to zoom, pan, and rotate,
allowing them to examine the solutions from all sides if
needed; the viewpoint of both solutions is synchronized to
ease the comparison. All 27 methods are compared exhaus-
tively by every rater, meaning

(
27
2

)
= 351 method pairs

per house × 10 houses = 3510 pairs for every rater. Most
raters rate a few more pairs because of the self-consistency
checks. See the Suppl. for the additional information.
Rater Reliability. We quantify rater reliability using two
complementary methods: self-consistency and correctness
on synthetic samples.
Correctness on Synthetic Samples. We introduced syn-
thetic pairs of wireframes with known ground-truth rank-
ings based on systematically applied ”corruptions.” Each
corruption type featured ”Low,” ”Medium,” and ”High”
severity levels. We treat the ”low” vs ”high” per each cor-
ruption type to be obvious enough that if annotators rank
them differently, it can be treated as a labeling error, e.g.
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Annotation agreement

Figure 4. Annotator agreement (all pairs). Left to right: annotator agreement with each other, the learned metric, handcrafted metrics, and
VLMs. Annotators background: A-K – 3D modellers, Des[0-2] - designers, CV[0-3] - computer vision engineers. Best zoom-in.
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because of wrong clicks. Average rater accuracy on these
”easy” pairs is 98.3%.

Self-consistency. We assessed intra-rater reliability by
measuring how consistently annotators rated repeated pairs
of wireframes, occasionally reversing pair order to miti-
gate order biases. These repeated evaluations constituted
only a small subset of the total ratings (self-consistency
checks are performed with 5% probability). The average
self-consistency score is 89.4%, which could be partially at-
tributed to the labeling mistakes and partially to the chang-
ing preferences during the annotation process, which we ex-
perienced ourselves.

Do we label enough? Under the assumption that there is
some latent “correct” winner in any given pair, and N raters
each independently select this “correct” winner with proba-
bility p, we can compute the probability that the majority is
“wrong” (see Fig. 5). Therefore, the estimated panel error
rate per pair is ≈ 1% for 11 (expert) raters, and 0.25% for
17 (all) raters (assuming a significant 20% individual error
rate). We also analyze the stability of our results and present
adequacy analysis for the number of raters, comparisons,
and houses. For each, we sweep a range of subsample sizes
and resample 500 times at each size. For each subsample of
a given size, we compute ranking implied by the win rates
for that subset and rank correlation (Kendall τ ) between the
subset ranks and the rankings using the full dataset. We then

construct a 95% Bootstrap CI across the 500 iterates for τ .
The minimum number of raters/comparisons/houses needed
for τ ≥ 0.95: comparisons ≥ 3350, houses ≥ 4, raters ≥ 8
(in all cases we have more than that).

Finding agreement. We compute an agreement score for
each pair for annotators using the following simple rule: the
same ranking gets 1 point, decisive ranking vs ”equal” gets
0.5 points, and the opposite ranking gets zero.

The agreement table between human annotators, metrics,
and VLMs is shown in Fig. 4. The agreement table with all
”equal” rankings excluded, is shown in the supplementary.

Observation 4.1

When accounting for ties, there is a moderate global
consensus among the human annotators; however, they
form two distinct clusters that do not seem to depend
on the annotator’s background. One group assigns more
weights to the edge accuracy – correlated with edge F1
and Jaccard distance, and the second – vertex accuracy,
correlated with corner F1 score.

The average agreement score is around 80% across all
annotators, but within clusters, it increases to 85%. When
annotators are decisive (select one of the reconstructions as
clearly better rather than selecting ”equal”), then the aver-
age agreement increases to 91%, and no clusters are ob-
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Figure 6. Metric ranking by agreement with group in average. Left to right: the first group of raters with more attention to vertices, the
second group of raters with more attention to edges, computer vision engineers, and designers.

served. Agreement with the metrics (middle part of Fig. 4)
suggests an explanation of preferences.

Observation 4.2

Human annotators pay more attention to correct parts of
the reconstruction than the incorrect parts. Regardless
of whether edges or vertices are considered, recall met-
rics agree more with human preferences than precision
ones.

Cluster 1 (raters A-G, CV, Des1-2) mostly correlates
with corner-based metrics, such as corner recall and corner
F1-score, whereas Cluster 2 (raters H-K, Des0) correlates
more with edge-based metrics, such as edge recall, edge F1-
score and Jaccard distance. The second difference between
clusters is that Cluster 2 is more likely to give an ”equal”
score for the low-quality reconstruction, whereas Cluster 1
tried to rank reconstruction more decisively.

The metrics rankings w.r.t. different groups of raters is
shown in Fig. 8.

Observation 4.3

The average agreement with human preferences of the
top handcrafted metrics does not vary significantly.
WED-based scores correlate with annotators the least.

The supplementary material shows the full agreement
table. Furthermore, the ranking setup changes the human
preferences for different metrics; for example, Jaccard dis-
tance performs much better for the decisive pairs compared
to all other metrics. WED with pre-registration, which was
used in the S23DR challenge, shows the worst correlation
and is just slightly better than random chance. Other flavors
of the WED metric, namely WED mnn and WED AP (used
in Building3D Challenge), perform better but still worse
than the rest. Graph structure metrics are in the middle.
We also consider the agreement with VLMs. Despite initial
success with individual examples, in our tests they did not
perform meaningfully better than chance.

Observation 4.4

VLMs do not show significant agreement with human
preferences in the wireframe ranking. The only excep-
tions are OpenAI models, as well as Grok2; yet those
are only slightly better than chance. VLMs agree the
most with the WED metrics family.
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Figure 7. Metric ranking by agreement with VLMs

Finding the best reconstruction. To determine if there
is a single ”quality” factor which explains the human ex-
pert judgments, we employ three distinct approaches to map
these pairwise comparisons to a single ranking of the meth-
ods: simple win rates, a Bradley-Terry probability model,
and a factor analysis based approach. While the methods
differ, they point to highly concordant conclusions.

Observation 4.5

Human raters tend to rank equally all solutions that are
below some quality threshold. Having no solution often
ranks better, compared to a totally wrong reconstruction.

Simple Win Rate The first approach is similar to chess
scoring – first a win-count table is computed. For each
rated pair, each method receives 1 point for a win, 0.5 for
a tie, and 0 for a loss. This scoring does not break ties
but distributes the points evenly. Results with selected re-
construction methods are shown in Fig. 8. Consistent with
the metric-human agreements, recall plays a more impor-
tant role, and the wireframes with perfect recall – ”add low”
and ”add med” are among the leaders in all groups. In other
words, extra (erroneous) edges are considered less of an is-
sue when compared to missing an edge or a vertex – the
”remove *” family. One possible explanation resides in the
information contained in the reconstruction: if all correct
edges are present, we may identify and remove any erro-
neous ones. However, in many cases, inferring the exact
position of an edge or vertex is not possible given the re-
construction alone if key information is missing.

The next set of solutions contains roughly correct but
slightly noisy reconstructions - ”perturb *” and ”deform*”
family. One of the best solutions from the S23DR Chal-
lenge ranked better than highly deformed ground truth but



worse than the less invasive corruptions.
The rest of the reconstructions get almost equal scores

due to the high proportion of draws and lack of wins among
themselves.
Bradley-Terry Model We have also modeled the quality
of each solution using a Bradley-Terry (BT) [7, 11, 14, 35]
preference model on the expressed preferences of the anno-
tators (using the BT-Abilities as scores). The Bradley-Terry
model defines the probability that item i is preferred over
item j as:

P (i > j) =
ai

ai + aj
, (4)

where ai, aj are positive real numbers representing the la-
tent strength of each item.

Following standard practice, we reparameterize these la-
tent strengths as exponentials of real-valued parameters θi,
giving ai = eθi . This yields:

P (i > j) =
eθi

eθi + eθj
=

1

1 + e−(θi−θj)
= σ(θi − θj) ,

(5)

where σ(x) is the sigmoid function σ(x) = 1
1+e−x .

This formulation is further generalized by introducing a
scale parameter s and offset o:

pij = σ

(
θi − θj

s
+ o

)
. (6)

With s = 1 and o = 0, this reduces to the standard Bradley-
Terry formulation. Alternatively, setting s = 400 and o =
800 yields the Elo scoring system familiar to chess players.

To estimate the latent abilities θ, we initialize each θi
by sampling from an independent Gaussian distribution and
then iteratively minimize the expectation of the following
binary cross-entropy loss using stochastic gradient descent
(SGD) with the Adam optimizer:

L = E(i,j) [−y log(pij)− (1− y) log(1− pij)] , (7)

where y = 1 if item i was chosen over item j, and y = 0
otherwise.
Factor Analysis To investigate whether the data reflect
a single underlying dimension of quality, we additionally
peruse a factor analysis based approach. We form the
methods-by-raters table M such that Mkl is the rate at
which rater k chose method l when they saw it. We hy-
pothesize the empirical log-odds of these win-rates (rate l
wins according to k), η = log M

1−M possess a low-rank
structure (rank one in the ideal case); this would indicate
a single dominant factor (”quality”) governing outcomes.
We apply singular value decomposition (SVD) to factorize
η = UΣV T and extract the first left singular vector of η
containing the estimated quality scores.

Method Empirical
Win Rate

Implied Win
Rate (BT)

Implied Win
Rate (Elo)

BT
Ability

Elo
Score

Quality
Factor

add low 0.89 0.89 0.89 2.79 1937 0.03
add med 0.86 0.86 0.86 2.47 1769 0.02
perturb med 0.85 0.85 0.85 2.33 1739 0.02
add high 0.82 0.82 0.82 2.04 1604 -0.02
perturb low 0.79 0.79 0.79 1.79 1510 -0.01
remove low 0.79 0.78 0.79 1.71 1498 -0.02
perturb high 0.67 0.67 0.68 0.83 1144 -0.09
deform med 0.67 0.67 0.66 0.83 1107 -0.09
deform low 0.66 0.66 0.66 0.78 1094 -0.10
remove high 0.65 0.65 0.65 0.67 1077 -0.10
remove med 0.63 0.64 0.64 0.60 1027 -0.11
kc92 0.51 0.51 0.51 -0.25 698 -0.18
Siromanec 0.50 0.50 0.49 -0.34 645 -0.19
deform high 0.50 0.50 0.50 -0.34 669 -0.19
maximivashechkin 0.39 0.39 0.39 -1.01 386 -0.27
rozumden 0.38 0.38 0.38 -1.10 373 -0.28
kcml 0.35 0.35 0.35 -1.28 291 -0.26
rozumden 0.34 0.34 0.33 -1.35 236 -0.26
Ana-Geneva 0.32 0.32 0.32 -1.47 221 -0.25
pc2wf retrain 0.29 0.29 0.30 -1.65 157 -0.23
Yurii 0.29 0.29 0.29 -1.63 146 -0.25
snuggler 0.25 0.25 0.24 -1.92 15 -0.25
baseline 0.25 0.25 0.25 -1.91 19 -0.25
Hunter-X 0.22 0.22 0.22 -2.10 -43 -0.25
TUM 0.22 0.22 0.22 -2.13 -48 -0.26
Fudan EDLAB 0.21 0.21 0.21 -2.18 -76 -0.26
pc2wf pretrained 0.20 0.20 0.20 -2.28 -117 -0.25

Table 1. Win rates for selected wireframe, according to the pair-
wise human annotations and estimated Elo.

Observation 4.6

We find a Kendall correlation coefficient >0.7 between
the rankings implied by SVD and those implied by BT.
This lends additional evidence to the hypothesis that
there is a true ”quality” factor driving the raters’ views.
The result is shown in Table 1.

Metric properties and ”unit tests”. We define a range of
properties a good metric should have, implement tests for
these properties, and report the results for all metrics. We
use a dataset of 128 ground truth wireframes, which we dis-
turb or alter and check the behavior of each metric. We
report the percentage of wireframes where the property was
valid for a given metric. Results are shown in Table 2. Most
of the metrics pass the triangle inequality test, the identity
of indiscernibles, and symmetry. None of the metrics is per-
fectly monotonic w.r.t. wireframe changes, which makes
sense; for example, the precision metrics are insensitive to
the number of predicted vertices/edges as long as each pre-
dicted element is aligned with an element of the ground
truth. Hausdorff and WED with pre-registration pass the
fewest tests, which is in line with their poor performance
w.r.t. human preferences. Conversely – corner F1, edge F1,
and Jaccard perform well and align well with the prefer-
ences of annotators. The spectral L1 distance and Chamfer
edge distance are exceptions – the spectral distance scores
well on properties, but not human alignment, and Chamfer
one – vice versa.

Additional considerations. After speaking to the human
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Figure 8. Methods scores according to different groups.

Corner Edge WED Spectral IoU Hausdorff Chamfer
Test Prec Rec F1 offset Prec Rec F1 prereg MNN nearest AP L1 L2 Jaccard dist. edge

Monotonic
Monotonic (wrong edges) 0.02 0.01 0.02 1.00 1.00 0.00 1.00 0.00 0.00 0.00 0.98 0.63 0.14 0.01 0.09 0.00
Monotonic (deform/split) 1.00 0.86 1.00 0.65 1.00 0.98 1.00 0.74 0.79 0.67 0.60 0.00 0.06 0.16 0.05 0.40
Monotonic (moving vertex) 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99 0.99 0.45 0.99 1.00
Monotonic (disconnect edges) 0.52 0.00 0.50 0.31 0.00 0.00 0.00 0.26 1.00 1.00 1.00 0.00 0.01 1.00 0.00 0.02
Monotonic (delete vertices) 0.00 1.00 1.00 1.00 0.00 1.00 1.00 0.75 1.00 1.00 1.00 0.90 0.33 0.67 0.14 0.99
Monotonic (delete edges) 0.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.31 1.00 0.07 0.83

Identity
Identity of indiscernibles 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.02 1.00 1.00 1.0 1.00 1.00 1.00 0.00 0.00
Near identity of indiscernibles 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0 1.00 1.00 1.00 0.00 0.00

Symmetry
Symmetry (0 mean, weighted) 1.00 1.00 1.00 0.88 1.00 1.00 1.00 0.44 0.44 0.44 0.44 0.44 0.90 1.00 0.84 1.00
Near symmetry (0 mean, weighted) 1.00 1.00 1.00 0.87 1.00 1.00 1.00 0.58 0.54 0.54 0.45 0.90 0.92 1.00 1.00 1.00
Symmetry (shift, weighted) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.99 0.92 0.98 0.99 1.00 1.00 0.82 1.00
Near symmetry (shift, weighted) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.99 1.00 1.00 1.00 1.00 1.00

Quasi-proportionality
Quasi-proportionality (shift, far) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.72 0.05 0.00 0.00
Quasi-proportionality (shift, close) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.16 0.16 0.91 1.00 0.72 0.06 0.00 0.00

Triangle ineq
Triangle ineq. (rand other) 0.99 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.99 0.95 0.92 0.97 1.00 1.00 0.96
Triangle ineq. (add noise) 1.00 1.00 1.00 0.91 1.00 1.00 1.00 0.84 0.81 0.83 1.00 0.90 0.69 1.00 1.00 1.00
Triangle ineq. (del1/del2) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.98 0.98 1.00 1.00 0.66 1.00 1.00 0.43

Pass count 11/17 11/17 12/17 11/17 12/17 13/17 14/17 8/17 10/17 10/17 13/17 13/17 8/17 11/17 6/17 8/17

Table 2. Properties ”unit-test” results for metrics, percentage of tests passed. The test is passed if the result is ≥ 90% (black).

annotators, we note the following. First, the 3D reconstruc-
tion experts are considering how the estimated reconstruc-
tion could help them in 3D modeling. There are two main
approaches to using such help. The first (in case of noisy
reconstructions) is to use the wireframe as a guide to create
their own clean reconstruction. The second, if the recon-
struction is already close enough, is to fix the wireframe to
produce the final result. The Wireframe Edit Distance is de-
signed to estimate how costly it would be to modify the pre-
dicted wireframe to match the ground truth. The issue with
it is the set of operations – WED only considers vertex/edge
deletion/insertion and vertex movement. In practice, one
could fit a single edge to multiple noisy ones, bulk-delete a
lot of wrong edges or vertices, and apply a rigid transform
on the whole model. All of these operations are commonly
used in 3D editing software, and WED could benefit from
them.

Finally, if the wireframe is totally wrong, then it is better
to have no reconstruction at all and start from scratch. In
this ”low quality regime”, most human annotators see no
difference between reconstructions if both are wrong.

Considering usage in competition and benchmarks, we
would recommend the use of F1-score, despite the fact that

recall-based metrics are more in line with human prefer-
ences, as it is less easy to game. For example, a dense grid
of vertices and edges could score perfectly on recall but be
useless in practice and score poorly on precision-based met-
rics.

5. Conclusion
We have studied how human preferences in structured re-
construction evaluation are explained via a wide range of
metrics. We show that human preferences can be learned
from a small number of examples by transferring from pre-
trained models which can subsequently be used to score un-
seen reconstructions. However, we conclude that additional
study is warranted prior to relying on such learned metrics
as the sole adjudication mechanism for competitions (espe-
cially those with strong incentives), because of the potential
for reward hacking, gradient-based adversarial attacks, and
the like. Based on our study, we recommend using a combi-
nation of edge-based (edge F1 or Jaccard score) and corner-
based metrics (F1) for benchmarks and competitions. They
better explain human preferences in ranking structured re-
constructions than more complex and fragile graph-based
metrics such as WED or spectral distances.
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façades to full 3d models. ISPRS Journal of Photogrammetry
and Remote Sensing, 211:438–451, 2024. 2, 3

[17] Shangfeng Huang, Ruisheng Wang, Bo Guo, and Hongxin
Yang. Pbwr: Parametric-building-wireframe reconstruc-
tion from aerial lidar point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 27778–27787, 2024. 2, 3

[18] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng
Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, Bowen Yu, Kai
Dang, et al. Qwen2. 5-coder technical report. arXiv preprint
arXiv:2409.12186, 2024. 4

[19] Apple Inc. Roomplan: Create 3d floor plans with
iphone and ipad. https://developer.apple.com/
augmented-reality/roomplan/, 2022. 1

[20] Yuhe Jin, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas,
Pascal Fua, Kwang Moo Yi, and Eduard Trulls. Image
Matching across Wide Baselines: From Paper to Practice.
International Journal of Computer Vision, 2020. 1, 2

[21] Matej Kristan, Jiri Matas, Aleš Leonardis, Tomas Vojir, Ro-
man Pflugfelder, Gustavo Fernandez, Georg Nebehay, Fatih
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Figure 9. First iteration wireframe ranking interface for human
annotators

6. Ranking and Annotator workflow

Annotators were selected from the same pool of 3D mod-
elers who created the ground truth wireframes. The experi-
ment is conducted through their employer, and compensated
at their usual fair hourly rate.

Most raters rate a few more pairs than minimally re-
quired 3500 because of the self-consistency checks. In prior
experiments, we observed a drop-off in self-consistency af-
ter around 400 pairs. Therefore, we inserted a following
pop-up every 350 pairs: “Time for a Break! Taking regular
breaks helps maintain rating quality. We recommend: Stand
up and stretch, Look away from the screen, Take a short
walk if possible.” We found this to be effective in main-
taining rating quality. One rater completed all ratings (over
3500) in under 7 hours. All other raters spread the task over
two or more (up to 27) days. Mean and median ratings per
day are 1327 and 207, respectively.

7. Ranking triplets

We have experimented with different forms of rankind the
reconstructions, one of which is shown in Figure 9. The
annotators were sorting triplets, and also marking if the best
solution is acceptable. However, it took people much longer
time to process one triplet, and in addition to that, the ranks
2-3 was much less reliable, than 1-2. In the end, we opted
for simplicity and also added a message asking annotators
to take a break after each 350 pairs.

8. Length Weighted Spectral Graph Distances

incorporate both topological and geometric information by
framing graph (wireframe) distance in terms of distances
between the spectra of weighted graph Laplacians. We mea-
sure the spectral distance using the 2-Wasserstein metric be-

tween the eigenvalue distributions:

SD(G1, G2) := W2(λ(L1), λ(L2)) (8)

where λ(L) denotes the spectrum of the Laplacian L.
For a graph G = (V,E), the weighted graph Laplacian

is defined:
L := D −A (9)

where D is the weighted degree matrix (|V | × |V | diag-
onal matrix with each diagonal entry containing the sum
of the lengths of edges incident to that vertex), and A is
the weighted adjacency matrix (|V | × |V | with Aij =
∥Vi − Vj∥2 iff (i, j) ∈ E and 0 otherwise).

9. Full agreement tables
The full annotator-metric-VLM agreement table is shown
in Figures 11, 12, and the metric rankings are shown in Fig-
ure 10.

10. VLM Prompts
All the VLMs are prompted with the following text.

Here we see two possible wireframe
reconstructions of houses (shown in blue)
superimposed on top of the ground truth
wireframe (shown in black).
Please describe the quality of each of
the two reconstructions (Left and Right).
If you don’t see any blue lines it is
because the reconstruction is incomplete.
Which reconstruction most closely matches
the ground truth
(end by printing the final answer in all
caps: "LEFT" or "RIGHT")?
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Figure 10. Metric ranking by agreement with group in average.
From top to bottom: group of raters 1 with more attention to ver-
tices, group of raters 2 with more attention to edges, computer
vision engineers
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Figure 11. Annotator-metrics-LLM agreement (all pairs). Annotators background: A-K – 3D modellers, Des[0-2] - designers, CV[0-3] -
computer vision engineers. Best zoom-in.
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Figure 12. Annotator-metrics-LLM agreement (excluding ties pairs). annotators agreement to each other, handcrafted metrics, and visual
language models. Annotators background: A-K – 3D modellers, Des[0-2] - designers, CV[0-3] - computer vision engineers. Best zoom-in.
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