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Figure 1. Potential error due to inaccurate mask predictions from the segmentation network.

1. Limitation

Video Instance Segmentation (VIS) is an advanced technol-
ogy designed to perform segmentation and tracking con-
currently, capturing the trajectories of individual instances
within a video. While this technology has significant bene-
fits, it also poses potential risks if misused, particularly in
surveillance applications. Such misuse could lead to severe
privacy infringements. It is important to note, however, that
the dataset used in this study is a standard one within the VIS
community and does not include any sensitive or personal
information. This precaution helps mitigate the risk of our
trained model being used for harmful purposes. Nonetheless,
the potential for negative impacts should not be underesti-
mated, and ethical considerations must guide the deployment
of VIS technologies.

Potential error in prediction. Our model is designed
to improve tracking accuracy by achieving precise object
matching across frames rather than focusing on segmentation
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performance. Consequently, if the pretrained segmentation
network produces inaccurate segmentation results, perfor-
mance may decrease. However, even in scenarios with impre-
cise mask predictions, our proposed context-aware modeling
can robustly track objects, as demonstrated in Fig. 1.

2. Experimental Details

2.1. Datasets

Youtube-VIS 2019 and 2021 YouTube-VIS was introduced
by Yang et al. in their pioneering study on the VIS task [12].
This dataset comprises high-resolution YouTube videos, cat-
egorized into 40 distinct classes. The 2019 version of the
dataset includes 2,238 videos for training, 302 for validation,
and 343 for testing [12]. The 2021 update expands these
numbers to 2,985, 421, and 453 videos for training, valida-
tion, and testing, respectively [13]. YouTube-VIS is utilized
across various pixel-level video understanding tasks, includ-
ing VIS, video semantic segmentation, and video object
detection.
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Figure 2. Visualization of object embeddings. Each point on the t-SNE [10] plot represents the learned object embeddings. The three different
colors of points indicate the embeddings of three different elephants throughout the entire video.

M
in
V
IS

C
T
V
IS

O
ur
s

Figure 3. Comparison of VIS results for the video in Fig. 2. These results show that our model robustly tracks objects even in scenes with
severe occlusions.

OVIS The OVIS dataset [9] presents a significant chal-
lenge with its frequent occlusions and a realistic represen-
tation of common everyday objects. This makes it highly
relevant for real-world applications. OVIS videos are longer
and contain more objects compared to those in YouTube-VIS,
which increases the complexity of segmentation and tracking
tasks. The dataset is organized into training, validation, and
test sets, with 607, 140, and 154 videos, respectively.

VIPSeg VIPSeg [8] is a comprehensive Video Panoptic
Segmentation dataset that includes 3,536 videos and 84,750
frames, annotated with pixel-level panoptic labels. Unlike
earlier VPS datasets that primarily focus on street views,
VIPSeg offers a broader range of challenges and practical
scenarios. It features 232 diverse settings and is annotated

with 58 ‘thing’ classes and 66 ‘stuff’ classes, making it one
of the most diverse and challenging datasets available in the
field.

2.2. Implementation

Our segmentation approach employs the Mask2Former ar-
chitecture [1], utilizing the officially recommended hyper-
parameters. For all experimental settings, we follow estab-
lished practices by incorporating COCO joint training, as
adopted in previous methodologies [3, 4, 11, 14, 15]. The
tracking network consists of six transformer blocks. Within
the tracking network’s transformer blocks, we innovate by
replacing the standard cross-attention layer with the refer-
ring cross-attention layer, as introduced in [15]. Additionally,



Figure 4. VIS results with various filter sizes.

we conduct experiments with the temporal refiner [15] over
160k iterations, specifically analyzing sequences of 15 con-
secutive frames to enhance tracking accuracy.

For efficient training, we adopt a staged approach where
the segmentation network is trained first, followed by the
tracking network with all other parameters frozen, promoting
stability and efficiency in learning, as suggested by previ-
ous studies [6, 15]. Optimization is carried out using the
AdamW optimizer [7], with a starting learning rate of 1e-
4 and a weight decay of 5e-2. The training process spans
40k iterations for the segmentation network and 160k itera-
tions for the tracking network, with learning rate reductions
scheduled at 28k and 112k iterations, respectively. During
training, we sample three frames for the segmentation net-
work and five frames for the tracking network from each
of eight batched videos. These frames undergo resizing to
ensure the shorter side is between 320 and 640 pixels, while
the longer side does not exceed 768 pixels. The loss func-
tion weights are set to λcls = 2.0, λbce = 5.0, λdice = 5.0,
λctx = 2.0, and λpro = 2.0 to balance the contributions of
each component during training. For inference, the shorter
side of input frames is scaled down to 448 pixels to main-

tain a consistent aspect ratio across inputs. All experiments
are conducted using 8 RTX2080Ti GPUs for the ResNet-50
backbone and 8 RTX3090 GPUs for the Swin-L and ViT-L
backbones, ensuring adequate computational resources are
available for the demands of each model configuration.

3. Further Studies

Analysis on object embeddings. To demonstrate the effec-
tiveness of our context-aware instance learning, we compare
the distribution of object embeddings from three different
models, as shown in Fig. 2. MinVIS does not engage in video
learning, resulting in less effective distinction between ob-
jects. Compared to MinVIS, CTVIS shows a clearer object
distinction by employing contrastive learning among object
embeddings, but it still exhibits some overlaps in object clus-
ters. In contrast, CAVIS forms much more distinct object
clusters, highlighting the advantage of leveraging contextual
information for object identification. This trends are reflected
in the VIS results, as shown in Fig. 3.

Effective filter size. Videos often contain objects of vary-
ing sizes, and for smaller objects, using an excessively large
context area can introduce noise, leading to inaccurate match-



Table 1. Ablation studies on each component of CAVIS. (a-d) present the results from the segmentation network, while the others present
those from the tracking network. “CL” denotes contrastive learning.

(a) Context-aware feature learning, PCC loss

CL with Q̂ LCTX LPCC AP

(i) 26.4
(ii) ✓ 27.9
(iii) ✓ 29.1
(iv) ✓ 27.6
(v) ✓ ✓ 28.3
(vi) ✓ ✓ 29.5

(b) Context filter size

Filter size AP

3 27.3
5 28.3
7 28.7
9 29.5
11 28.9

(c) Sampled frames

# of frames AP

2 29.5
3 30.0
4 28.7

(d) Context filter type

Metric
Context filter type

Average Learnable

AP 29.5 28.4

(e) Cross-Attention for T

Metric
Cross-Attention
Q̂ Q

AP 34.4 36.1

(f) Context alignment

Metric
Context alignment

✗ ✓

AP 32.8 36.1

Figure 5. VIS results from our model on a video containing a fast-moving object.

ing as shown in Fig. 4. To better understand this effect, we
analyze the impact of different filter sizes to identify the
optimal value. Our findings indicate that the overall trend
remains consistent, regardless of variations in the number of
frames used during training.

Ablation study with minimal setups. To simplify repro-
ducibility, we additionally provide ablation studies on the
OVIS dataset [9] with the ResNet-50 [2] backbone, detailed
in Tab. 1. The results exhibit similar trends to those observed
in the main text, further validating the consistency of our
findings. For these experiments, we train the segmentation
network with 2 frames over 40k iterations, while the tracking
network is trained with 5 frames over 40k iterations. Experi-
ments (i- iii) show that implementing contrastive learning,
whether with standard or context-aware instance features,
leads to significant performance gains. Particularly, context-
aware instance features result in a notable +2.7 AP improve-
ment over the baseline, a considerable increase compared to
the +1.3 AP improvement observed with standard instance
features.

Robustness of our model. Our method does not rely
solely on context. By incorporating both context and instance
features, our approach shows robustness even in scenes con-
taining fast-moving objects where context changes rapidly,

as shown in Fig. 5.

Method AP
MinVIS [5] 23.3
DVIS [15] 31.6
VITA [3] 32.6

DVIS++ [16] 37.2
GenVIS [4] 37.5

Ours 38.6

Table 2. Compari-
son on YTVIS 2022
dataset.

Performance on long video. We
additionally report the performance
on the YouTube-VIS 2022 dataset,
a well-known benchmark featuring
long video sequences. Its validation
set includes 71 additional videos
compared to the YouTube-VIS 2021
dataset, making it particularly chal-
lenging due to the need for accu-
rately tracking dynamically appearing and disappearing ob-
jects over extended periods. We evaluate our model on these
71 long videos and compare it against existing state-of-the-
art models with a ResNet-50 backbone. As shown in Tab. 2,
our approach outperforms existing methods, demonstrating
that our context-aware modeling remains effective for robust
object matching even in long-range video scenarios.

Method Time (ms) YTVIS19 OVIS

DVIS [15] 78.9 51.2 30.2
GenVIS [4] 80.1 50.0 35.8
Ours 85.6 55.7 37.6

Table 3. Computational cost.
Computational cost. We compare the inference speed of

our approach against recent state-of-the-art methods, DVIS



Figure 6. Additional qualitative results on OVIS dataset.

[15] and GenVIS [4], as shown in Tab. 3. The inference
speeds were measured under identical conditions on a 2080ti
GPU using the ResNet-50 backbone. Our method requires an
additional time cost of 6.7ms and 5.5ms compared to DVIS
and GenVIS, respectively. However, this cost is justified
by performance gains of +1.8 AP and +7.6 AP on OVIS,
and +4.5 AP and +5.7 AP on YTVIS19, demonstrating a
reasonable trade-off between increased computation and
improved accuracy.

Additional qualitative results. We provide additional
qualitative results of CAVIS across various datasets, as de-
picted in Fig. 6-9. These results underscore the robust capa-
bility of CAVIS to track objects in diverse scenarios for both
VIS and VPS tasks. Notably, CAVIS excels in environments
featuring numerous similar objects, fast-moving objects, and
significant occlusions, demonstrating its effectiveness across
complex dynamic scenes.

References
[1] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander

Kirillov, and Rohit Girdhar. Masked-attention mask trans-

former for universal image segmentation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 1290–1299, 2022. 2

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 4

[3] Miran Heo, Sukjun Hwang, Seoung Wug Oh, Joon-Young
Lee, and Seon Joo Kim. Vita: Video instance segmentation
via object token association. Advances in Neural Information
Processing Systems, 35:23109–23120, 2022. 2, 4

[4] Miran Heo, Sukjun Hwang, Jeongseok Hyun, Hanjung Kim,
Seoung Wug Oh, Joon-Young Lee, and Seon Joo Kim. A
generalized framework for video instance segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 14623–14632, 2023. 2,
4, 5

[5] De-An Huang, Zhiding Yu, and Anima Anandkumar. Minvis:
A minimal video instance segmentation framework without
video-based training. Advances in Neural Information Pro-
cessing Systems, 35:31265–31277, 2022. 4

[6] Junlong Li, Bingyao Yu, Yongming Rao, Jie Zhou, and Jiwen
Lu. Tcovis: Temporally consistent online video instance



Figure 7. Additional qualitative results on Youtube-VIS 2019 dataset.

Figure 8. Additional qualitative results on Youtube-VIS 2021 dataset.

segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1097–1107, 2023. 3

[7] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 3

[8] Jiaxu Miao, Xiaohan Wang, Yu Wu, Wei Li, Xu Zhang, Yun-

chao Wei, and Yi Yang. Large-scale video panoptic seg-
mentation in the wild: A benchmark. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21033–21043, 2022. 2

[9] Jiyang Qi, Yan Gao, Yao Hu, Xinggang Wang, Xiaoyu Liu,



Figure 9. Additional qualitative results on VIPSeg dataset.

Xiang Bai, Serge Belongie, Alan Yuille, Philip HS Torr, and
Song Bai. Occluded video instance segmentation: A bench-
mark. International Journal of Computer Vision, 130(8):
2022–2039, 2022. 2, 4

[10] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9(11),
2008. 2

[11] Junfeng Wu, Yi Jiang, Song Bai, Wenqing Zhang, and Xiang
Bai. Seqformer: Sequential transformer for video instance
segmentation. In European Conference on Computer Vision,
pages 553–569. Springer, 2022. 2

[12] Linjie Yang, Yuchen Fan, and Ning Xu. Video instance seg-
mentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5188–5197, 2019. 1

[13] Linjie Yang, Yuchen Fan, Yang Fu, and Ning Xu. The 3rd
large-scale video object segmentation challenge - video in-
stance segmentation track, 2021. 1

[14] Kaining Ying, Qing Zhong, Weian Mao, Zhenhua Wang, Hao
Chen, Lin Yuanbo Wu, Yifan Liu, Chengxiang Fan, Yunzhi
Zhuge, and Chunhua Shen. Ctvis: Consistent training for
online video instance segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 899–908, 2023. 2

[15] Tao Zhang, Xingye Tian, Yu Wu, Shunping Ji, Xuebo

Wang, Yuan Zhang, and Pengfei Wan. Dvis: Decoupled
video instance segmentation framework. arXiv preprint
arXiv:2306.03413, 2023. 2, 3, 4, 5

[16] Tao Zhang, Xingye Tian, Yikang Zhou, Shunping Ji, Xuebo
Wang, Xin Tao, Yuan Zhang, Pengfei Wan, Zhongyuan Wang,
and Yu Wu. Dvis++: Improved decoupled framework for uni-
versal video segmentation. arXiv preprint arXiv:2312.13305,
2023. 4


	Limitation
	Experimental Details
	Datasets
	Implementation

	Further Studies

