
APPENDIX

This is appendix for the paper: CityNav: A Large-Scale

Dataset for Real-World Aerial Navigation. We present
additional details of the data collection interface, dataset
statistics, models, and experimental results.

A. Data Collection Interface
We developed the data collection website using the Amazon
Mechanical Turk platform. Figure 12 displays a full screen-
shot of the web interface, enabling users to operate an aerial
agent within the CityFlight environment.

Figure 12. Data collection interface. Full screenshot of web
interface for collecting human demonstration trajectories for the
CityNav dataset.

B. Dataset Statistics
Agent Altitude During Operation. We analyze human-
operated flights to better understand altitude behavior dur-
ing navigation tasks. Figure 13 shows the mean altitude
of human-operated agent trajectories, segmented into 20-
meter intervals based on distance from the goal. Given that
the average 3D altitude is 35.96 meters, this result indi-
cates that most human operators flew above building-level
heights, gradually descending as they approached their tar-
gets. In addition, we investigate how clearly ground-level
objects are visible at these flight altitudes. Figure 14 shows
a top-down view illustrating that human pilots typically
navigate with clear visual access to the target objects. Given

Figure 13. Relationship between the distance to goal and the mean
altitude of aerial agents.

Figure 14. Top-down view of the aerial agent at an altitude of
150m, captured via the web interface.

that the average altitude is above buildings, pilots can effec-
tively identify and target landmarks.
Human Navigation Strategy. In the aerial VLN task, the
exploration space is vast, making it crucial to narrow down
the search area. To address this, our approach mimics the
way humans leverage geographic information (landmarks)
to reduce the exploration range. As illustrated in Figure 1,
human demonstrations rely on the landmarks mentioned in
the description (e.g., Sidney Street) to navigate toward the
landmark’s vicinity. Once near the landmark, humans fo-
cus their search on the area around it to find the goal object.
This human strategy enables efficient navigation by focus-
ing efforts around landmarks.

To validate this concept, we analyzed the trajectory data
collected in the CityNav dataset, which includes geographic
information. The results indicate that agents passed di-
rectly over landmarks 36.3% of the time in human demon-
stration (HD) trajectories, compared to 24.6% in shortest-
path (SP) trajectories. Additionally, we examined whether
agents passed within a certain radius of the landmark cen-
ter. Within 20 meters, 35.5% of HD trajectories passed near
a landmark, compared to 24.0% for SP. Similarly, at a 40-



Figure 15. Architecture of AerialVLN+GSM.

meter radius, 62.5% of HD trajectories were near a land-
mark, compared to 51.9% for SP. These results suggest that
human pilots tend to navigate closer to landmarks—a strat-
egy that likely contributes to the superior performance of
our GSM-based method leveraging human demonstration
trajectories, as observed in Table 3 and 4.

C. Model Details
C.1. AerialVLN+GSM architecture
The architecture of AerialVLN+GSM is shown in Fig-
ure 15. It utilizes four input modalities: RGB images, depth
images, GSM images, and textual navigation descriptions.
For RGB images, a ResNet-50 encoder pre-trained on Im-
ageNet is used. The input size is 224 → 224. For depth
images, another ResNet-50 encoder pre-trained on Point-
GoalNav is used. The input size is 256 → 256. The GSM
encoder is a convolutional network consisting of five 2D
convolutional layers with channel sizes of (32, 64, 128, 64,
32), kernel size of three, stride of one, and padding of one.
Each convolutional layer is followed by a ReLU activation
and max-pooling operation. The input size is 224 → 224.
The text encoder is implemented using a Bi-LSTM. The
output embedding h→

t is obtained through two GRU mod-
ules integrated with description attention and visual atten-
tion mechanisms. Specifically, embeddings from the three
visual modalities are first fed into the first GRU to produce
an intermediate embedding ht. Subsequently, description
attention followed by visual attention for each modality is
applied to ht and the corresponding modality-specific fea-

tures. Finally, the second GRU aggregates the outputs from
these attention modules to yield the final output embedding
h→
t . The action is predicted from h→

t through a learnable
linear layer.

C.2. Geographic Semantic Map
The GSM consists of five categories: current field of view,
explored area, landmarks, potential goals, and surrounding
objects. These categories are selected because it is essen-
tial to understand the spatial relationships between the ex-
plored area and objects. The current field of view and ex-
plored area are acquired from GNSS coordinates. Specif-
ically, these coordinates are obtained from the CityFlight
environment at each time step, and the square area corre-
sponding to the top-down UAV view is marked with a value
of one in a binary mask. Landmarks are segments retrieved
from OpenStreetMap. For each landmark name, the cor-
responding segment is retrieved. Potential goals and sur-
rounding objects are detected using an object detector. We
used GroundingDINO [28] due to its strong performance in
open-set object detection. The detection prompt includes
both object categories defined in the SensatUrban dataset
and object names extracted from the navigation descriptions
(e.g., “a building with a grey roof” and “a red van with black
stripes”), to detect object regions from the current RGB im-
age. Before navigation begins, landmark and object names
are extracted using a language model (GPT-3.5). The orig-
inal GSM size corresponds to the smallest 2D map that en-
compasses the entire 3D scene. Finally, the GSM is resized
to 224→224 pixels and provided as input to the model.

C.3. Training
All models were trained on a single GeForce RTX 4090
GPU. The Adam optimizer was used for 5 epochs, with
an initial learning rate of 5 and a batch size of 12. Cross-
entropy loss and an MSE loss, which measures the distance
between the goal point and the current position, were em-
ployed. For AerialVLN, the step parameter for the look-
ahead guidance was set to 10.

D. Additional Analysis
Category-level performance. We analyze performance
at the category level since descriptions can refer to dif-
ferent goal types. Table 6 shows that AerialVLN+GSM
generally delivers the best results, suggesting that integrat-
ing the state-of-the-art AerialVLN model with GSM sig-
nificantly enhances navigation performance at the category
level. Although CMA+GSM also shows improvements, it
lags behind AerialVLN+GSM, and while Seq2Seq+GSM
performs better than its baseline, it remains less effective
than the other GSM-enhanced models. Overall, the ground
and others categories pose particular challenges for baseline



Category Method NE→ SR↑ OSR↑ SPL↑

Seq2Seq 244.67 1.98 8.50 1.68
Seq2Seq+GSM 100.97 3.24 13.00 3.10

CMA 253.16 0.76 8.73 0.72
Building CMA+GSM 95.70 4.86 14.35 4.80

AerialVLN 197.51 1.71 4.00 1.61
AerialVLN+GSM 87.40 6.52 16.91 6.42

Human 11.3 85.64 93.21 57.26

Seq2Seq 233.08 1.30 9.31 1.19
Seq2Seq+GSM 95.78 4.11 15.44 3.96

CMA 239.24 0.87 11.76 0.85
Car CMA+GSM 90.99 4.98 17.75 4.95

AerialVLN 164.29 2.38 4.62 2.31
AerialVLN+GSM 84.78 7.65 18.76 7.52

Human 6.7 95.39 97.00 67.89

Seq2Seq 278.82 0.59 6.93 0.59
Seq2Seq+GSM 88.67 3.76 14.06 3.64

CMA 294.39 1.19 7.33 1.17
Ground CMA+GSM 82.31 4.16 13.47 4.06

AerialVLN 208.63 0.79 2.38 0.78
AerialVLN+GSM 73.05 5.94 19.60 5.87

Human 12.0 82.40 92.42 55.64

Seq2Seq 245.44 0.00 3.64 0.00
Seq2Seq+GSM 98.97 3.64 10.30 3.64

CMA 232.95 0.61 9.70 0.61
Ohters CMA+GSM 89.81 3.64 12.73 3.60

AerialVLN 182.68 1.21 2.42 1.21
AerialVLN+GSM 84.65 3.64 21.21 3.40

Human 13.9 76.97 86.84 54.11

Table 6. Performance of each method at the category level.

methods, yet GSM integration helps mitigate these difficul-
ties. These findings underscore the value of a geographic
semantic map for improving aerial VLN across diverse ob-
ject categories. Furthermore, the comparison with human
performance highlights the gap between aerial agents and
human navigation capabilities, with AerialVLN+GSM ap-
proaching human-like performance in some metrics while
still leaving room for further improvement.
Disaster scenarios. Disaster search is one of practical ap-
plications as the target’s location is unknown. We created
2D simulation data for flood scenarios. Table 7 summarizes
the navigation performance. As shown, all models exhibit
reduced performance; however, the effectiveness of GSM
remains. Simulating other types of disasters and more dy-
namic scenarios is left for future work.

Method NE→ SR↑ OSR↑ SPL↑

Seq2Seq 288.5 1.38 11.58 0.69
Seq2Seq+GSM 98.8 3.97 14.4 2.89

CMA 273.1 0.6 9.27 0.4
CMA+GSM 92.5 4.61 15.63 3.47

AerialVLN 188.6 1.46 4.65 1.38
AerialVLN+GSM 84.9 6.80 18.46 6.68

Table 7. Navigation performance under flood inundation condi-
tions (test-unseen).


