Class-Wise Federated Averaging for Efficient Personalization

Supplementary Material

A. Comparison of Aggregation Process

Figure 7 illustrates the aggregation processes of FedAvg
and cwFedAvg using three clients for a binary classifi-
cation task: (a) FedAvg: Server aggregates received lo-
cal models. (b) Server distributes the aggregated global
model to all clients. (c¢) cwFedAvg: Server performs
class-wise aggregation to create class-specific global mod-
els. (d) Server creates personalized models by combining
class-specific global models and distributes them to clients.
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Figure 7. Comparison of aggregation processes in FedAvg and
cwFedAvg with three clients for binary classification task. * de-
notes the local models updated using class-specific global models.

B. Effect of WDR for Many-Class and Highly
Imbalanced Data

Figure 8 exhibits similar patterns to the CIFAR-10 patho-
logical setting (Figure 2). For client ID 11, which contains
approximately ten dominant classes, WDR achieves better
class separation (Figure 8b), resulting in p; ; values that
closely match p; ; (circular markers in Figure &c).
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Figure 8. Evolution of p;, ; and its correlation with p; ; for CIFAR-
100 practical setting.

C. Experimental Details

C.1. CNN Architecture and Hyperparameters

We employ a 4-layer CNN architecture [18] composed of
two convolutional layers with 5x5 kernels (32 and 64 chan-
nels respectively), each paired with 2x2 max pooling. The
network terminates with a fully connected layer containing
512 units and ReL.U activation, followed by a softmax out-
put layer. We adopt the hyperparameter settings from Zhang
et al. [30] for baseline algorithms except for CFL, IFCA,
FedNH and FedUV. For CFL, IFCA, FedNH and FedUV
we follow the configurations specified in their respective pa-
pers. A comprehensive list of hyperparameter settings for
all baselines is provided in Table 5.

Algorithm  Hyperparameter settings
FedProx 1 (proximal term) = 0.001
ay (gradient descent) = 1000
FedAMP A (regularization) = 1
o (attention-inducing function) = 0.1
CFL €1 (norm of averaged updated weight) = 0.4
€2 (norm of maximum updated weight) = 0.9
IFCA k (number of clusters) = 2 for CIFAR-10,
8 for CIFAR-100 and Tiny ImageNet
FedNH p (smoothing parameter) = 0.9
FedUvV 1 (classifier variance regularizer) = 2.5

) (Hyperspherical uniformity regularizer) = 0.5

Table 5. Hyperparameter settings for the baselines.

C.2. Implementation Details

The experiments are implemented in PyTorch 2.4 and con-
ducted on a server with two Intel Xeon Gold 6240R CPUs
(96 cores total), 256GB memory, and two NVIDIA RTX
A6000 GPUs running Ubuntu 22.04 LTS.
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Figure 9. Data distributions for the CIFAR-10 practical heterogeneous setting.
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Figure 10. Data distributions for the CIFAR-100 practical heterogeneous setting.

C.3. Data Distributions of Practical Settings

Figures 9 and 10 show data distributions that vary according
to different v values. Each cell in the heatmaps indicates the
number of samples per class for each client. Increasing o
results in decreased data heterogeneity.

D. Text Dataset Evaluation

We evaluated our approach on a text dataset to test its ef-
fectiveness across various modalities. Table 6 shows the re-
sults for the four highest-performing algorithms, reporting
test accuracy on AGNews using FastText.

FedAvg FedAMP FedFomo cwFedAvg

79.57 £0.17 97.95£0.05 97.93 £0.09 98.19 &+ 0.01

Table 6. Classification accuracy(%) for AG News.

E. Memory Cost Comparison

The memory efficiency of cwFedAvg depends on the ra-
tio of parameter counts in the feature extractor to those in
the classifier. Table 7 demonstrates the memory cost (num-
ber of parameters in millions) differences for ResNet-18
(512 feature dimension in the penultimate layer) with vary-
ing class counts. While increasing class counts requires
higher memory costs, our selective approach (cwFedAvg
(Output)) significantly reduces cost compared to the non-
selective approach (cwFedAvg (All)).

# Classes FedAvg cwFedAvg (All) cwFedAvg (Output)

10 11.18 111.81 11.23
100 11.23 1122.67 16.36
1000 11.69 11688.42 524.68

Table 7. Memory cost comparison for ResNet-18.

F. Visualizations of /;-norms of Output Layer
Weight Vectors

This section explores the applicability of visualizing client
{o-norms of output layer weight vectors to the CIFAR-
100 dataset, which has a significantly higher number of
classes than CIFAR-10 (Figure 11). Additionally, we ex-
amine whether the personalization patterns exhibited by
the cwFedAvg method can be observed in other PFL al-
gorithms such as FedAMP and FedFomo for CIFAR-10
practical settings (Figure 12). Detailed explanations are in-
cluded in the figure captions.

G. Convergence Behavior Analysis

In Figure 4, we observe distinct average training loss pat-
terns between cwFedAvg and FedAvg. We further exam-
ine the per-client convergence behaviors to analyze how dif-
ferent client data distributions affect the training dynamics
of the two methods in Figure 13 and 14. Detailed explana-
tions are included in the figure captions.
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Figure 11. Heatmaps for the CIFAR-100 practical heterogeneous setting. These heatmaps confirm that the CIFAR-100 practical heteroge-
neous setting shows very similar patterns as the CIFAR-10 pathological heterogeneous setting. Notably, Figure 11g (cwFedAvg without
WDR) closely resembles Figure 11c. In contrast, Figure 11h (cwFedAvg with WDR) exhibits a pattern similar to Figure 11a, suggesting
that each model has undergone personalization tailored to its possessed classes. Additionally, we visualize ten class-specific global models
of cwFedAvg in Figures 11i (without WDR) and 11j (with WDR). As designed, each global model in Figure 11j specializes in a specific

single class.
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Figure 12. Heatmaps for the CIFAR-10 practical heterogeneous setting. These heatmaps confirm the observations from the CIFAR-10
pathological heterogeneous setting in Figure 3. Notably, PFL methods such as FedAMP and FedFomo exhibit patterns similar to the data
distribution, albeit with less pronounced similarity compared to cwFedAvg. Interestingly, clustering-based PFL methods, such as CFL
and IFCA, exhibit distinct patterns, with two clusters evident in the heatmaps. Among the various FL and PFL approaches, cwFedAvg
demonstrates the most similar pattern with the true data distribution, suggesting its superior capability in personalizing clients.
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Figure 13. Comparison of Per-Client Convergence Behaviors for CIFAR-10 in Practical Settings (o« = 0.1). Figures clearly show that
cwFedAvg converges significantly faster than FedAvg for highly imbalanced distributions, where the number of samples per class is
shown below each client ID in the line plots. This superior convergence of cwFedAvg is observed in clients 5, 6, 9, 10, 13, 15, 18, 19, and
20. Conversely, FedAvg demonstrates faster convergence in clients 1 and 12, where the data distribution is less imbalanced.
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Figure 14. Comparison of Per-Client Convergence Behaviors for CIFAR-100 in Practical Settings (o« = 0.1). Figures reveal convergence
characteristics that align with the findings in Figure 13. The line plots, which display the number of non-zero classes under each client ID,
demonstrate that cwFedAvg achieves faster convergence than FedAvg in highly imbalanced scenarios. Although this advantage persists
across most clients, FedAvg shows superior convergence rates for clients 5 and 20, where data is more evenly distributed.



