
CoMoGaussian: Continuous Motion-Aware Gaussian Splatting
from Motion-Blurred Images

Supplementary Material

1. Implementation Details

CoMoGaussian is trained for 40k iterations based on Mip-
Splatting [12]. We set the number of poses N that constitute
the continuous camera trajectory to 9, which indicates that
M is 5. The embedding function of Sec. 4.2 is implemented
by nn.Embedding of PyTorch, and the embedded features
have the sizes of hidden state of 64. The sizes of hidden
state of the single-layer encoders Er, Ec, and the single-
layer decoders Dr, Dc are also 64. Dr consists of three
head MLPs that extract the screw axis parameters ω and v,
along with θ, while Dc comprises two head MLPs that ex-
tract Ac and tc as described in Sec. 4.3. The neural deriva-
tive function f consists of two parallel single MLP layers,
where one is designated for the rotation component and the
other for the translation component, where f and g share the
learnable parameters. To ensure nonlinearity in the camera
motion within the latent space, we apply the ReLU activation
function to each layer. The CNN F consists of two convo-
lutional layers with 32 channels with kernel size of 5×5
for the first layer and 3×3 for the rest one. The pixel-wise
weights are obtained by applying a pointwise convolutional
layer to the output of F , and the scalar mask M is obtained
by applying another pointwise convolution to the output of
F . For first 1k iterations, Gaussian primitives are roughly
trained without rigid body transformation and CMR trans-
formation. After 1k iterations, those transformations start to
be trained without the pixel-wise weight and the scalar mask
to allow the initial camera motion path to be sufficiently op-
timized. After 3k iterations, the pixel-wise weight and the
scalar mask start training. We set λc, λo, and λM to 0.3,
10−4, and 10−3 respectively for the objective function. All
experiments are conducted on a single NVIDIA RTX 4090
GPU.

2. Additional Ablation Study

Number of Poses on Camera Motion. We conduct an
ablation study on the number of camera poses used to model
continuous camera motion, with the results presented in
Tab. 1. To validate the effectiveness of the CMR transfor-
mation, we perform two separate experiments: one using
only the rigid body transformation described in Sec. 4.2,
and the other incorporating both the rigid body transforma-
tion and the CMR transformation discussed in Sec. 4.3. The
trends in the three evaluation metrics with respect to differ-
ent values of N in Tab. 1 are visualized in Fig. 1.

When using only the rigid body transformation, perfor-

Table 1. Experimental results based on the number of poses N
along the camera motion trajectory.

Cam. Rigid Only (Sec. 4.2) Rigid (Sec. 4.2) + CMR (Sec. 4.3)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS(↓)

5 26.60 0.8101 0.1217 26.90 0.8245 0.1073
6 26.94 0.8187 0.1101 27.40 0.8345 0.0996
7 27.08 0.8218 0.1059 27.52 0.8377 0.0925
8 27.08 0.8241 0.1025 27.67 0.8399 0.0865
9 27.19 0.8249 0.1005 27.85 0.8435 0.0822
10 27.29 0.8267 0.0972 27.89 0.8442 0.0814
11 27.36 0.8295 0.0933 27.79 0.8423 0.0833
12 27.43 0.8312 0.0906 27.86 0.8399 0.0826
13 27.57 0.8341 0.0879 27.81 0.8406 0.0813

mance improves almost linearly as N increases across all
metrics. Since a motion-blurred image is fundamentally the
result of integrating sharp images over time, increasing N
allows for a finer discretization of the continuous camera
trajectory, leading to better performance. However, numeri-
cal integration is inherently discrete, even when the camera
motion itself is continuous, which explains why a larger N
results in improved accuracy.

Nevertheless, increasing N also leads to a significant
rise in computational complexity during training, as each
motion-blurred image requires rendering N sharp images.
This creates a trade-off: smaller values of N suffer from
discretization artifacts, while larger values of N lead to in-
creased computational costs due to multiple renderings. To
address this, we introduce the CMR transformation, which
adds a small degree of flexibility to the transformation ma-
trix, effectively compensating for the limitations of dis-
cretized integration at smaller N .

As shown in Tab. 1 and Fig. 1, when CMR is applied
alongside the rigid body transformation, performance satu-
rates at N = 9 across all metrics, even surpassing the per-
formance of the rigid body transformation alone at N = 13.
This demonstrates that the CMR transformation mitigates
the limitations of rigid body transformations at lower N and
justifies its inclusion in our framework.

Orthogonal Regularization. We conduct a qualitative
ablation study on the regularization loss for the orthogonal-
ity condition introduced in Sec. 4.3 of the main paper. Al-
though the impact of this loss may appear minor in Tab. 3
of the main paper, a qualitative comparison reveals a notice-
able difference.

As shown in Fig. 2, including this regularization results
in significantly improved visual quality compared to when

of Camera Pose

PS
N

R

of Camera Pose

SS
IM

of Camera Pose

LP
IP

S

Figure 1. Performance variation based on the number of poses N used to construct the camera motion trajectory.

w/o Orthogonal Regularization w/ Orthogonal Regularization

PSNR = 29.54 PSNR = 29.60

Figure 2. Qualitative comparison of results with and without or-
thogonal regularization. Despite similar PSNR values, the results
with regularization capture more fine details.

it is omitted. Without regularization, the 3× 3 linear trans-
formation matrix is learned without constraints on shearing
and scaling, which leads to unintended distortions. When
such unconstrained affine transformations are included, the
overall scene structure may still be well captured, but finer
details tend to be lost.

By enforcing the orthogonality condition, we restrict
the transformation matrix to allow only minimal devia-
tions, preventing excessive distortions. As demonstrated in
Fig. 2, while the quantitative performance remains similar,
the model captures finer details more effectively, highlight-
ing the importance of this regularization.

3. Difference from SMURF [6]
In this section, we compare our approach with SMURF, a
methodology for handling the continuous dynamics of cam-
era motion blur. SMURF utilizes neural ODEs to warp
a given input ray into continuous rays that simulate cam-
era motion. However, its continuous dynamics are applied
only in the 2D pixel space, lacking the inclusion of higher-
dimensional camera motion in 3D space. Additionally, as

SMURF is implemented on Tensorial Radiance Fields (Ten-
soRF) [1], a ray tracing-based method, it exhibits relatively
slower training and rendering speeds.

In contrast, our model uses neural ODE to obtain the 3D
camera poses which constitue the camera motion trajectory.
Our approach incorporates higher-dimensional information
compared to SMURF by operating directly in 3D space
rather than the 2D pixel space. Furthermore, as our method
is implemented on Mip-Splatting [12], a rasterization-based
method, it ensures faster training and rendering speeds than
SMURF.

4. Camera Pose Visualization
Visualization for Other Estimators. To provide a qual-
itative evaluation of the camera motion estimators in Tab. 4
of our main paper, we visualize the camera poses generated
by the MLP-based and GRU-based estimators in Fig. 3.

Since the MLP estimator does not account for the se-
quential nature of camera motion, it inherently lacks con-
tinuity, resulting in a trajectory that appears discontinuous
and inconsistent. While the GRU estimator produces trajec-
tories that seem more continuous, it separately implements
GRU cells for forward and backward propagation, causing
discontinuities between camera poses along the trajectory.

In contrast, our neural ODE-based estimator ensures a
fully continuous camera motion over time, achieving both
visually smooth trajectories and superior quantitative per-
formance compared to the MLP and GRU estimators.

Visualization for Sharp Images. We visualize the cam-
era poses to examine how CoMoGaussian’s camera trajec-
tory modeling operates on the NeRF-LLFF dataset [9, 10],
which consists of sharp images. As shown in Fig. 4, the
camera motion trajectory for sharp images remains nearly
stationary, demonstrating the generalization capability of
our proposed method.

Additional Visualization We visualize the camera mo-
tion trajectories for input blurry images predicted by Co-

MLP Neural ODE

GRU Neural ODE

Figure 3. Comparison between the Neural ODE-based estimator
and other estimators. Only the Neural ODE-based estimator ex-
hibits a continuous camera trajectory.

Figure 4. Visualization of camera motion trajectories for sharp
images.

MoGaussian in Fig. 5 and Fig. 6. Fig. 5 illustrates cam-
era motions for images with significant blur, where the pre-
dicted trajectories are continuous over time and align pre-
cisely with the input images. Fig. 6 depicts camera motions
for images with relatively less blur, where the predicted tra-
jectories show minimal movement, yet still match the in-
put images accurately. These results demonstrate that our
blurring kernel effectively models precise continuous cam-
era motion.

Table 2. Comparison of training and rendering speeds across var-
ious 3DGS-based methods. * indicates that the speed is identical
to that of the corresponding model.

Methods Training Time (hours) Rendering Speed

BAD-Gaussians [13] 0.37 *3DGS [2]
Deblurring 3DGS [3] 0.20 *3DGS [2]
BAGS [11] 0.83 *Mip-Splatting [12]

CoMoGaussian 1.33 *Mip-Splatting [12]

5. Training and Rendering Speed

In this section, we compare the training time and rendering
speed of our method with recent 3DGS-based approaches.
As shown in Tab. 2, CoMoGaussian requires a longer train-
ing time compared to other methods. However, given the
quantitative results in Tabs. 3 to 5, as well as the qualitative
comparisons in our supplementary videos, our contributions
remain significant. We believe that addressing the limita-
tions discussed in the main paper will enable faster training
in the future.

Additionally, since sharp rendering is performed solely
using 3DGS [2] or Mip-Splatting [12] without additional
modules, our method achieves fast rendering speeds com-
parable to those of other approaches.

6. Derivation of Rigid Body Motion [7]

In this section, we explain the derivation process for Eq. (9)
and Eq. (10) from the main paper. This derivation aims
to expand and simplify the process described in Modern
Robotics [7] for better clarity and accessibility.

The components of a given screw axis include the unit
rotation axis ω̂ ∈ R3 and the translation component v ∈ R3.
The unit rotation axis consists of the angular velocity ω and
the rotation angle θ:

ω̂ =
ω

θ
, where ||ω̂|| = 1. (1)

We combine the rotation axis ω̂ and the rotation angle θ
to represent an element of the Lie Algebra, so(3), which
serves as the linear approximation of the rotation ma-
trix. Before proceeding, ω̂ is converted into a 3 × 3
skew-symmetric matrix [ω̂] to compactly express the cross-
product operation as a matrix multiplication:

[ω̂] =

 0 −ω̂z ω̂y

ω̂z 0 −ω̂x

−ω̂y ω̂x 0

 ∈ so(3), where [ω̂]3 = −[ω̂].

(2)
Using the skew-symmetric matrix [ω̂] and the translation
component v, the screw axis [S] is expressed. By multi-
plying this screw axis with θ, we incorporate the magnitude
of the rotation and translation along the screw axis:

[S]θ =

[
[ω̂]θ vθ
0 0

]
∈ se(3), (3)

where se(3) represents the Lie Algebra, which corresponds
to the infinitesimal changes of the Lie Group SE(3). To map
this infinitesimal change to the SE(3) transformation matrix
T = e[S]θ, we use the Taylor expansion, following these
steps:

e[S]θ =

∞∑
n=0

[S]n θ
n

n!
(4)

= I + [S]θ + [S]2 θ
2

2!
+ · · · (5)

=

[
I + [ω̂]θ + [ω̂]2 θ2

2!
+ · · ·

(
Iθ + [ω̂] θ

2

2!
+ · · ·

)
v

0 1

]
(6)

=

[
e[ω̂]θ G(θ)v
0 1

]
∈ SE(3) (7)

∵ [S]n =

[
[ω̂]n [ω̂]n−1v
0 0

]
(8)

For the rotation matrix e[ω̂]θ, we simplify it using the Taylor
expansion and Eq. (2), resulting in:

e[ω̂]θ = I + [ω̂]θ + [ω̂]2
θ2

2!
+ [ω̂]3

θ3

3!
+ +[ω̂]4

θ4

4!
· · · (9)

= I +

(
θ − θ3

3!
+ · · ·

)
[ω̂] +

(
θ2

2!
− θ4

4!
+ · · ·

)
[ω̂]2

(10)

= I + sin θ[ω̂] + (1− cos θ)[ω̂]2 ∈ SO(3) (11)

The translational component G(θ) is also derived using the
Taylor expansion and Eq. (2):

G(θ) = Iθ + [ω̂]
θ2

2!
+ [ω̂]2

θ3

3!
+ [ω̂]3

θ4

4!
+ · · · (12)

= Iθ +

(
θ2

2!
− θ4

4!
+ · · ·

)
[ω̂] +

(
θ3

3!
− θ5

5!
+ · · ·

)
[ω̂]2

(13)

= Iθ + (1− cos θ)[ω̂] + (θ − sin θ)[ω̂]2 (14)

The term G(θ) physically represents the total translational
motion caused by the rotational motion as the rigid body
rotates by θ. In other words, G(θ) indicates how rotational
motion contributes to translational motion, which can also
be expressed as an integral of the rotation motion:

G(θ) =

∫ θ

0

e[ω̂]θdθ (15)

=

∫ θ

0

(
I + sin θ[ω̂] + (1− cos θ)[ω̂]2

)
dθ (16)

= Iθ + (1− cos θ)[ω̂] + (θ − sin θ)[ω̂]2 (17)

Through the above process, we derive Eq. (9) and Eq. (10)
in the main paper, improving readability of the paper and
providing a clear foundation for understanding the mathe-
matical framework.

7. Per-Scene Quantitative Results
We show the per-scene quantitative performance on Deblur-
NeRF real-world, synthetic, and ExbluRF real-world

dataset in Tab. 3, Tab. 4, and Tab. 5. CoMoGaussian demon-
strates superior quantitative performance on most scenes in
the real-world dataset.

8. Additional Qualitative Results
We provide additional visualization results in Fig. 7, which
demonstrate that our CoMoGaussian outperforms not only
in quantitative metrics but also in qualitative performance.
For comparative videos, please refer to the supplementary
materials.

BALL BUICKCOZYROOMBASKET

COFFEE TANABATAFACTORYPARTERRE

Temporal Flow

Figure 5. Camera motion trajectory predicted by CoMoGaussian for input images with significant blur.

BALL DECORATIONCOFFEECOZYROOM

Figure 6. Camera motion trajectory predicted by CoMoGaussian for input images with moderate blur.

Table 3. Per-Scene Quantitative Performance on Deblur-NeRF Real-World Scenes.

Real-World Scene BALL BASKET BUICK COFFEE DECORATION

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Naive NeRF [10] 24.08 0.6237 0.3992 23.72 0.7086 0.3223 21.59 0.6325 0.3502 26.48 0.8064 0.2896 22.39 0.6609 0.3633
Mip-Splatting [12] 23.22 0.6190 0.3400 23.24 0.6880 0.2880 21.46 0.6590 0.2660 24.73 0.7490 0.2880 20.55 0.6410 0.2990

Deblur-NeRF [8] 27.36 0.7656 0.2230 27.67 0.8449 0.1481 24.77 0.7700 0.1752 30.93 0.8981 0.1244 24.19 0.7707 0.1862
DP-NeRF [4] 27.20 0.7652 0.2088 27.74 0.8455 0.1294 25.70 0.7922 0.1405 31.19 0.9049 0.1002 24.31 0.7811 0.1639

BAD-Gaussians [13] 22.28 0.6032 0.2054 22.02 0.7004 0.1197 19.95 0.6127 0.1103 25.58 0.7965 0.0932 21.11 0.6651 0.1185
Deblurring 3DGS [3] 28.27 0.8233 0.1413 28.42 0.8713 0.1155 25.95 0.8367 0.0954 32.84 0.9312 0.0676 25.87 0.8540 0.0933
BAGS [11] 27.68 0.7990 0.1500 29.54 0.9000 0.0680 26.18 0.8440 0.0880 31.59 0.9080 0.0960 26.09 0.8580 0.0830

CoMoGaussian 29.60 0.8422 0.1115 30.78 0.9041 0.0761 27.23 0.8502 0.0742 33.04 0.9247 0.0578 26.44 0.8601 0.0891

Real-World Scene GIRL HERON PARTERRE PUPPET STAIR

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Naive NeRF [10] 20.07 0.7075 0.3196 20.50 0.5217 0.4129 23.14 0.6201 0.4046 22.09 0.6093 0.3389 22.87 0.4561 0.4868
Mip-Splatting [12] 19.87 0.7140 0.2780 19.43 0.5050 0.3320 22.28 0.5900 0.3210 22.05 0.6310 0.2670 21.91 0.4740 0.3870

Deblur-NeRF [8] 22.27 0.7976 0.1687 22.63 0.6874 0.2099 25.82 0.7597 0.2161 25.24 0.7510 0.1577 25.39 0.6296 0.2102
DP-NeRF [4] 23.33 0.8139 0.1498 22.88 0.6930 0.1914 25.86 0.7665 0.1900 25.25 0.7536 0.1505 25.59 0.6349 0.1772

BAD-Gaussians [13] 19.16 0.7037 0.1178 19.47 0.5264 0.1747 21.71 0.6154 0.1165 21.74 0.6506 0.1166 23.86 0.5969 0.0892
Deblurring 3DGS [3] 23.26 0.8390 0.1011 23.14 0.7438 0.1543 26.17 0.8144 0.1206 25.67 0.8051 0.0941 26.46 0.7050 0.1123
BAGS [11] 25.45 0.8690 0.0790 22.04 0.7150 0.1260 25.92 0.8190 0.0920 25.81 0.8040 0.0940 26.69 0.7210 0.0800

CoMoGaussian 27.08 0.8884 0.0733 23.18 0.7350 0.1326 26.11 0.8131 0.0872 27.09 0.8337 0.0658 27.92 0.7792 0.0541

Table 4. Per-Scene Quantitative Performance on Deblur-NeRF Synthetic Scenes.

Synthetic Scene FACTORY COZYROOM POOL TANABATA TROLLEY

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Naive NeRF [10] 19.32 0.4563 0.5304 25.66 0.7941 0.2288 30.45 0.8354 0.1932 22.22 0.6807 0.3653 21.25 0.6370 0.3633
Mip-Splatting [12] 18.21 0.4234 0.4769 25.25 0.7968 0.1646 30.57 0.8483 0.1456 21.54 0.6754 0.3075 20.82 0.6388 0.3165

Deblur-NeRF [8] 25.60 0.7750 0.2687 32.08 0.9261 0.0477 31.61 0.8682 0.1246 27.11 0.8640 0.1228 27.45 0.8632 0.1363
DP-NeRF [4] 25.91 0.7787 0.2494 32.65 0.9317 0.0355 31.96 0.8768 0.0908 27.61 0.8748 0.1033 28.03 0.8752 0.1129

BAD-Gaussians [13] 17.86 0.3892 0.1440 23.50 0.7396 0.0616 26.90 0.7296 0.1127 20.54 0.6379 0.0860 21.26 0.6921 0.0963
Deblurring 3DGS [3] 24.01 0.7333 0.2326 31.45 0.9222 0.0367 31.87 0.8829 0.0751 27.01 0.8807 0.0785 26.88 0.8710 0.1028
BAGS [11] 22.35 0.6639 0.2277 32.21 0.9359 0.0245 28.72 0.8404 0.0804 26.79 0.8735 0.1099 26.61 0.8627 0.1156

CoMoGaussian 29.32 0.8971 0.0563 33.34 0.9427 0.0239 32.45 0.8924 0.0705 29.53 0.9273 0.0408 30.45 0.9240 0.0546

Table 5. Per-Scene Quantitative Performance on the ExbluRF Real-World Scenes.

ExbluRF BENCH CAMELLIA DRAGON JARS

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Mip-Splatting [12] 24.58 0.5671 0.6190 23.28 0.5151 0.5886 28.65 0.5403 0.7002 24.08 0.5335 0.6094

ExbluRF [5] 24.75 0.5783 0.3003 23.14 0.4925 0.3630 24.26 0.4042 0.5641 22.21 0.4591 0.4213

BAD-Gaussians [13] 28.27 0.7125 0.2266 23.39 0.5102 0.3034 30.24 0.6383 0.4374 28.41 0.7041 0.3347
Deblurring 3DGS [3] 30.44 0.7708 0.2587 26.26 0.6401 0.3964 30.87 0.6643 0.5561 27.56 0.6559 0.4431
BAGS [11] 25.40 0.6142 0.4962 23.29 0.5177 0.5450 29.06 0.5577 0.6738 24.00 0.5402 0.5534

CoMoGaussian 31.82 0.8011 0.2170 28.53 0.7004 0.2846 31.95 0.7166 0.4476 29.63 0.7351 0.3474

ExbluRF JARS2 POSTBOX STONE LANTERN SUNFLOWERS

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Mip-Splatting [12] 22.10 0.5682 0.5817 23.19 0.5277 0.5710 22.64 0.6004 0.6308 25.78 0.6775 0.5020

ExbluRF [5] 21.99 0.5736 0.3519 23.34 0.5287 0.2978 26.18 0.6832 0.4236 25.25 0.6765 0.3223

BAD-Gaussians [13] 26.27 0.6914 0.3326 25.01 0.6264 0.2760 25.19 0.6724 0.3794 27.82 0.7443 0.2865
Deblurring 3DGS [3] 26.76 0.7100 0.3942 23.89 0.5563 0.3492 23.32 0.6430 0.4687 29.75 0.7955 0.3248
BAGS [11] 22.20 0.5658 0.5268 24.76 0.5891 0.4205 22.72 0.5979 0.5556 26.14 0.6920 0.4508

CoMoGaussian 29.72 0.7699 0.3283 29.99 0.7631 0.2479 28.66 0.7549 0.3402 30.90 0.8062 0.2622

Reference BAD-Gaussians Deblurring-3DGS BAGS CoMoGaussian Ground Truth

Figure 7. Additional Qualitative Comparison on the Synthetic and Real-World Scenes.

References
[1] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and

Hao Su. Tensorf: Tensorial radiance fields. In European
Conference on Computer Vision, pages 333–350. Springer,
2022. 2

[2] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4):1–14, 2023. 3

[3] Byeonghyeon Lee, Howoong Lee, Xiangyu Sun, Usman Ali,
and Eunbyung Park. Deblurring 3d gaussian splatting. arXiv
preprint arXiv:2401.00834, 2024. 3, 6

[4] Dogyoon Lee, Minhyeok Lee, Chajin Shin, and Sangyoun
Lee. Dp-nerf: Deblurred neural radiance field with physical
scene priors. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12386–
12396, 2023. 6

[5] Dongwoo Lee, Jeongtaek Oh, Jaesung Rim, Sunghyun Cho,
and Kyoung Mu Lee. Exblurf: Efficient radiance fields
for extreme motion blurred images. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 17639–17648, 2023. 6

[6] Jungho Lee, Dogyoon Lee, Minhyeok Lee, Donghyung
Kim, and Sangyoun Lee. Smurf: Continuous dynam-
ics for motion-deblurring radiance fields. arXiv preprint
arXiv:2403.07547, 2024. 2

[7] Kevin M Lynch and Frank C Park. Modern robotics. Cam-
bridge University Press, 2017. 3

[8] Li Ma, Xiaoyu Li, Jing Liao, Qi Zhang, Xuan Wang, Jue
Wang, and Pedro V Sander. Deblur-nerf: Neural radiance
fields from blurry images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 12861–12870, 2022. 6

[9] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Transac-
tions on Graphics (ToG), 38(4):1–14, 2019. 2

[10] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part I, pages 405–421, 2020. 2, 6

[11] Cheng Peng, Yutao Tang, Yifan Zhou, Nengyu Wang, Xijun
Liu, Deming Li, and Rama Chellappa. Bags: Blur agnos-
tic gaussian splatting through multi-scale kernel modeling.
arXiv preprint arXiv:2403.04926, 2024. 3, 6

[12] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and
Andreas Geiger. Mip-splatting: Alias-free 3d gaussian splat-
ting. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 19447–19456,
2024. 1, 2, 3, 6

[13] Lingzhe Zhao, Peng Wang, and Peidong Liu. Bad-gaussians:
Bundle adjusted deblur gaussian splatting. arXiv preprint
arXiv:2403.11831, 2024. 3, 6

	Implementation Details
	Additional Ablation Study
	Difference from SMURF lee2024smurf
	Camera Pose Visualization
	Training and Rendering Speed
	Derivation of Rigid Body Motion lynch2017modernrobotics
	Per-Scene Quantitative Results
	Additional Qualitative Results

