
Combinative Matching for Geometric Shape Assembly

Supplementary Material

In this supplementary material, we present additional infor-

mation and analyses not included in the main paper. In Sec-

tion A, we provide further analysis of Combinative Match-

ing using a toy dataset as well as extended experimental re-

sults and analyses, including further analysis on learned de-

scriptors and orientations, as well as additional experimen-

tal results. In Section B, we detail the network architecture,

including equivariant feature extractor, orientation hypothe-

sizer, invariant feature computation, matching modules, and

training objectives. In Section C, we describe additional de-

tails on the training and evaluation recipes, including hyper-

parameter settings and the evaluation details for multi-part

assembly.

A. Additional Experimental Results

A.1. Results on Vanilla Breaking Bad Dataset

Since all our experiments were conducted on the volume-

constrained version of the Breaking Bad dataset [13],

we additionally provide a quantitative comparison on the

vanilla version of the Breaking Bad dataset for a fair com-

parison with prior methods.

Method
RMSE(R) ↓ RMSE(T) ↓ PACD ↑ CD ↓

(◦) (10−2) (%) (10−3)

everyday

Global [6, 12] 80.7 15.1 24.6 14.6

LSTM [17] 84.2 16.2 22.7 15.8

DGL [4] 79.4 15.0 31.0 14.3

Wu et al. [18] 79.3 16.9 8.41 28.5

DiffAssemble [11] 73.3 14.8 27.5 -

Jigsaw [7] 42.3 10.7 57.3 13.3

PuzzleFusion++ [16] 38.1 8.0 71.0 6.0

CMNet (Ours) 32.0 9.6 77.3 3.5

everyday → artifact

Jigsaw [7] 52.4 22.2 45.6 14.3

PuzzleFusion++ [16] 52.1 13.9 49.6 14.5

CMNet (Ours) 46.0 14.3 52.6 9.8

Table A1. Multi-part assembly results on vanilla Breaking Bad

dataset [13]. Numbers in bold indicate the best performance and

underlined ones are the second best.

Table A1 shows that ours consistently achieves accurate

assembly, outperforming previous state-of-the-art methods.

The robustness of our approach is particularly evident

in cross-subset evaluation (everyday → artifact),

where the performance remains stable despite substantial

variations in object categories and fragment characteristics.

A.2. Further Analysis on Combinative Matching

In this section, we provide deep, but intuitive analyses of

our combinative matching, highlighting the necessity of ex-

plicit occupancy learning for robust shape assembly. To

illustrate its significance, we build a synthetic dataset that

highlights the critical role of occupancy learning, particu-

larly in scenarios with ambiguous geometric patterns, e.g.,

visual resemblance shown in Fig. A1.

A.2.1. Toy dataset with local ambiguity

Figure A1. Example of potential failure assemblies caused by vi-

sual ambiguity within matching.

Figure A2. Six types of ambiguity pattern for toy dataset. 2D

polygons are further extruded to 3D meshes.

Ambiguity patterns. The synthetic dataset consists of six

carefully designed patterns, as shown in Fig. A2. These pat-

terns were deliberately crafted to ensure that correct assem-

bly depends primarily on recognizing occupancy and direc-

tionality rather than visual resemblance. We use pattern 1~3

for training, enabling the model to learn occupancy rela-

tionships and effectively mitigate visual ambiguities explic-

itly. Then patterns 4~6 are used to validate our assumption:

if the model successfully learns occupancy-based comple-

mentary relationships from the train set, it should inherently

generalize well to the visually analogous but structurally

different test patterns.

We generate 200 random objects of each pattern {1, 2, 3}

for training, 50 objects of each for validation, and 50 objects

of each pattern {4, 5, 6} for testing. Although each pattern

retains its pattern structure, small shape variations are in-

troduced randomly. For further data generation details, we

refer the reader to Algs. 1 and 2.

A.2.2. Experiments

Method
CRD ↓ CD ↓ RMSE(R) ↓ RMSE(T) ↓

(10−2) (10−3) (◦) (10−2)

Jigsaw [7] 17.64 6.95 84.98 24.81

PMTR [5] 16.01 6.01 70.13 15.70

CMNet (Ours) 9.24 2.07 55.29 13.40

Table A2. Pairwise shape assembly results on toy dataset.

Shape Occupancy CRD ↓ CD ↓ RMSE(R) ↓ RMSE(T) ↓

Matching Matching (10−2) (10−3) (◦) (10−2)

✓ 11.95 3.92 66.90 17.06

✓ ✓ 9.24 2.07 55.29 13.40

Table A3. Ablation study on matching strategy.

Table A2 compares our method against recent state-of-

the-art methods, e.g., Jigsaw [7] and PMTR [5], on the syn-

thetic dataset. In particular, both Jigsaw [7] and PMTR [5]

show limited performance when tackling parts that exhibit

visually similar but occupancy-opposed surfaces. By con-

trast, our method enforces a direct contrast in volume occu-

pancy alongside shape similarity, thereby achieving robust,

interlocking matches and significantly improving alignment

accuracy across all metrics.

Ablation Study. In addition to comparing against exist-

ing methods, we validate the effect of explicit occupancy

matching by ablating our framework. Table A3 reports the

performance when removing the occupancy branch and re-

lying solely on shape-based similarity. This confirms that

identifying visually similar surfaces alone is not sufficient:

opposite volume occupancy must also be enforced to pre-

vent misleading matches arising from superficially alike

shapes.

Surface Desc. CRD ↓ CD ↓ RMSE(R) ↓ RMSE(T) ↓

Segmentation Type (10−2) (10−3) (◦) (10−2)

single 17.24 7.48 87.84 21.84

primal-dual 17.80 6.74 87.47 23.17

✓
single 17.19 7.29 89.06 21.68

primal-dual 17.64 6.95 84.98 24.81

GT
single 12.88 4.63 71.10 10.89

primal-dual 13.04 5.63 72.04 11.98

Table A4. Ablation study on surface segmentation and primal-dual

matching modules in Jigsaw [7].

Discussion on Jigsaw [7]. Jigsaw [7] applies a primal-

dual descriptor specifically to the predicted mating surfaces,

aiming to distinguish convex regions from concave ones.

P
a

tt
e

rn
 4

P
a

tt
e

rn
 6

OursOurs

(w/o volume occupancy

matching)

Jigsaw

(primal-dual)

P
a

tt
e

rn
 5

Figure A3. Visualization of top-k matches (k = 128). Positive

matches are colored in green, while negative matches are colored

in red.

However, Table A4 shows that whether Jigsaw uses single-

descriptor or primal-dual streams, and regardless of whether

it segments mating surfaces or not, the improvements over

a naive approach remain marginal. In several cases, primal-

dual matching even underperforms single matching, indi-

cating that the method struggles to capture a genuine com-

plementary relationship (i.e., opposing occupancy). We ad-

ditionally provide ground-truth surface masks (GT) as a fur-

ther upper bound, yet still see little gain from dual learning.

Visualization result of top-k matches in Fig. A3 corroborate

this: the two-stream descriptor alone does not robustly re-

ject visually deceptive matches, confirming that an explicit

“identical shape + opposite occupancy” objectives are key

to resolving ambiguous interfaces.

Coarse Fine CRD ↓ CD ↓ RMSE(R) ↓ RMSE(T) ↓

Matcher Matcher (10−2) (10−3) (◦) (10−2)

PMT - 15.80 5.55 71.91 14.31

PMT PMT 16.01 6.01 70.13 15.70

Table A5. Ablation study on the feature matcher in PMTR [5].

Discussion on PMTR [5]. As shown in Tab. A5, whether

PMTR employs only a coarse matcher (PMT) or includes

an additional fine matcher, both settings still struggle to

address patterns demanding explicit occupancy opposition.

While fine matching often helps localize small-scale inter-

faces in standard registration tasks, here it does not sub-

stantially alleviate the core limitation of PMTR’s design:

Shape

Correlation
Occupancy

Correlation
Combined

high

low
Source

Figure A4. Additional visualization of correlation distribution.

A green dot (•) on the left point cloud marks the source’s i-th

point, with corresponding true match points marked with green

dots and arrows. Point colors represent correlation score magni-

tudes for the i-th point’s similarity to each target point, with red

and blue indicating high and low correlation scores, respectively.

maximizing only identical surface shape similarity. With-

out negatively enforcing “occupancy,” the method remains

prone to errors on visually alike yet geometrically mis-

matched parts.

A.3. Additional orientation analysis

As discussed in our main paper (Fig. 4 in Sec. 4.3), the

learned orientations, FP
d and F

Q
d , exhibit several notable

patterns that enable the model to effectively align mating

surface along with high interpretability. To further analyze

these learned patterns across various examples, we provide

additional visualizations of learned orientation under the

same experimental setups described in Sec. 4.3.

Figure A5 presents the results for six distinct objects,

again showcasing consistent patterns: (1) parallel align-

ment of source and target orientations (xi and yi), (2) xi

directed toward the center of mating surfaces, (3) parallel

alignment of xi with 2D plane of mating surfaces, (4) out-

ward/inward directed yi based on convexity/concavity, and

(5) correlation between magnitudes of yi and surface curva-

ture. These patterns highlight the robustness and adaptabil-

ity of our method in learning valid orientations that respect

the geometry and complementarity of mating surfaces with-

out any explicit supervision, verifying both the effectiveness

and interpretability of the proposed combinative matching.

A.4. Additional correlation heatmap analysis

As in Fig. 5 of Sec. 4.3, we compare the correlation matri-

ces for shape Cs, occupancy Co, and combined correlation

C of additional examples to further validate the efficacy of

the proposed combinative matching approach over the con-

ventional matching. Following the same experimental setup

described Sec. 4.3 of the main paper, Fig. A4 illustrates the

comparison, where we observe similar phenomena to those

presented in the main paper.

When relying solely on the shape distribution (Cs)i, the

best target match for the i-th source point is distributed

over multiple regions due to local ambiguity of visual re-

semblance. The occupancy distribution (Co)i reveals rel-

atively uniform scores across the surface, with a slightly

higher concentration near the true match, offering comple-

mentary information but lacking precise localization. In-

tegrating shape and occupancy information effectively re-

solves both local ambiguity and match confidence uncer-

tainty, highlighting the importance of task-oriented multiple

representation learning in combinative matching.

A.5. Additional qualitative results

We provide additional qualitative comparisons against re-

cent state-of-the-art methods [5, 7, 9, 18] on the Breaking

Bad dataset. Figures A9 and A10 illustrate the compari-

son results in pairwise and multi-part settings, respectively.

From the baselines, several notable patterns emerge: (1)

Failure in localizing mating surfaces: The baselines lack

an understanding of local orientations and occupancy on

the mating surfaces. This results in incorrect placement of

parts, which are often located in the air rather than at the in-

terfaces of their corresponding parts. Examples of this fail-

ure include (a,c,d,e,f,h,i,j,k,n)-Wu et al. [18], (c,d,f,g,h,i,k)-

Jigsaw [7], and (d,g)-PMTR [5] as shown in Fig. A10.

(2) Failure in establishing correct correspondence:

While some methods perform decent localization of mating

surfaces in pairwise assembly, they often fail to establish ac-

curate correspondences due to local ambiguities, thus lead-

ing to incorrect assembly configurations such as reversed

or overlapping parts. Specific examples of this issue are

(d,g,h,k)-GeoTr [9], (b,i,m)-Jigsaw [7], and (a,c,e,f,h,j,k)-

PMTR [5], as observed in Fig. A9. These observations

highlight critical challenges faced by existing methods in

AssemblyAssembly

Figure A5. Additional visualization of learned orientations. We visualize learned orientations (in R
3) of {xi}i∈I (left, red arrows) and

{yi}i∈I (middle, green arrows). The assembly results are shown on the right.

both accurate interface localization and resolving ambigui-

ties during assembly. By addressing these issues, we show

that the proposed combinative matching demonstrates supe-

rior quantitative and qualitative results in both pairwise and

multi-part scenarios.

B. Additional Network Details

In this section, we provide the details of the network com-

ponents that were omitted in the main paper for brevity.

B.1. Equivariant feature extractor

For our backbone network fVNN, we adopt Vector Neuron

Network (VNN) [2], which represents neurons as 3D vec-

tors, i.e., (Feqv)i,j ∈ R
3 for all i, j. This representation en-

ables the network to handle SO(3) transformations directly,

preserving consistent local feature orientations. Specifi-

cally, for any given input feature F, each i-th layer f i
VNN of

the network satisfies the following property: f i
VNN(FR) =

f i
VNN(F)R where R ∈ SO(3) [2]. To enhance the gen-

eral context learning capabilities of the network, we modify

the original VN-DGCNN [2, 15] architecture to broaden the

receptive field of the features Feqv by redesigning the net-

work into a U-shaped architecture, as illustrated in Fig. A6.

For downsampling and upsampling of the features in the

process, we utilize the TransitionDown and TransitionUp

modules, similar to the approach in [19]. This modification

allows for an efficient contextual feature extraction while

preserving the rotational equivariance property.

B.2. Orientation hypothesizer

The backbone output Feqv ∈ R
K×D×3 is processed through

an orientation hypothesizer fhyp to provide orientations such

that fhyp(Feqv) = Fd ∈ R
K×3×3. The hypothesizer con-

tains a VN-Linear [2] layer that reduces the channel di-

mension of the input features from D to 2, producing two

vectors of size R
K×2×3, where these two vectors, for each

point, represent candidate orientations for the x-axis and y-

axis, respectively. To ensure these vectors form a valid ori-

entation basis, we apply the Gram-Schmidt process: First,

we compute the 2D plane spanned by the two vectors and

adjust the y-axis vector to ensure it is orthogonal to the other

x-axis vector within this plane. Next, we calculate a third

vector orthogonal to the 2D plane, resulting in a complete

orthonormal basis. Finally, we apply L2 normalization to

these vectors, ensuring that each (Fd)i ∈ SO(3) for all i,
representing a valid 3D rotation matrix for each point. Note

that this Gram-Schmidt process is rotation-equivariant, i.e.,

fhyp(FeqvR) = fhyp(Feqv)R for any R ∈ SO(3), as dis-

cussed by Luo et al. [8].

V
N

-E
d
g
e
C

o
n
v

[K,21,3] [K/8,170,3]

V
N

-E
d
g
e
C

o
n
v

V
N

-E
d
g
e
C

o
n
v

[K/2,42,3]

T
ra

n
s
it
io

n
 D

o
w

n

V
N

-E
d
g
e
C

o
n
v

[K/4,85,3]

T
ra

n
s
it
io

n
 D

o
w

n

V
N

-E
d
g
e
C

o
n
v

[K/8,170,3]

T
ra

n
s
it
io

n
 D

o
w

n

V
N

-E
d
g
e
C

o
n
v

[K/4,85,3]

T
ra

n
s
it
io

n
 U

p

V
N

-E
d
g
e
C

o
n
v

[K/2,42,3]

T
ra

n
s
it
io

n
 U

p

V
N

-E
d
g
e
C

o
n
v

[K,21,3]

T
ra

n
s
it
io

n
 U

p

V
N

-M
L
P

[K,341,3]

Figure A6. Overall framework of our U-shaped equivariant feature extractor.

B.3. Invariant feature computation

Given the equivariant network fVNN which satisfies

fVNN(XR) = fVNN(X)R for any rotations R ∈ SO(3)

and input points X ∈ R
K×3, along with the hypothesizer

fhyp, we aim to define a function finv that provides invariant

features Finv ∈ R
K×3D, satisfying the following property:

finv(X) = finv(XR) = Finv, (1)

for any rotation matrix R. To achieve this, we define finv

as the dot product between the equivariant features and the

hypothesized orientations:

finv(Xi) = (Feqv)i · (Fd)
⊤
i , (2)

for all i ∈ {1, . . . ,K}, where (Feqv)i represents the equiv-

ariant features output by fVNN and (Fd)i represents the hy-

pothesized orientations output by fhyp. The invariance prop-

erty of finv can be verified through the following proof:

finv(XiR) = fVNN(XiR) · (fhyp(fVNN(XiR)))⊤ (3)

= (fVNN(Xi)R) · (fhyp(fVNN(Xi))R)⊤

= fVNN(Xi)RR⊤(fhyp(fVNN(Xi)))
⊤

= fVNN(Xi)(fhyp(fVNN(Xi)))
⊤

= (Feqv)i · (Fd)
⊤
i

= finv(Xi).

Thus, finv is provably invariant to rotations, making Finv

suitable for the subsequent tasks requiring rotational invari-

ance, such as shape and occupancy matching.

B.4. Shape and occupancy matcher

In Tab. A6, we tabularize the components of each layer

for shape and occupancy matchers. Each matcher consists

of a three-layer MLP, where each layer includes a linear

transformation followed by normalization and activation.

The key difference between shape and occupancy match-

ers lies in the activation function used in the final layer:

LeakyReLU is used for the shape matcher to allow the shape

correlation matrix Cs to have a wider range of values, cap-

turing large variations in shape similarity. In contrast, Tanh

Layer Shape Matcher Occupancy Matcher

1

Conv1D(1023 → 512) Conv1D(1023 → 512)

InstanceNorm(512) InstanceNorm(512)

LeakyReLU LeakyReLU

2

Conv1D(512 → 512) Conv1D(512 → 512)

InstanceNorm(512) InstanceNorm(512)

LeakyReLU LeakyReLU

3

Conv1D(512 → 512) Conv1D(512 → 512)

InstanceNorm(512) InstanceNorm(512)

LeakyReLU Tanh

Table A6. Components of the shape and occupancy matchers.

is employed for the occupancy descriptors to constrain ex-

treme activations, ensuring that the occupancy correlation

matrix Co avoids overemphasizing noisy or outlier regions,

particularly those unrelated to occupancy learning, such as

non-mating surfaces.

Empirical observations, as shown in Fig. A4, indicate

that outliers occur more frequently in occupancy correla-

tions compared to shape correlations, with large occupancy

scores being more uniformly distributed across surfaces,

whereas shape scores are more localized and structured. Al-

lowing large variations in Cs, therefore, ensures that dom-

inant shape features are captured (introducing local ambi-

guity), while controlling Co prevents outliers or irrelevant

regions from skewing the overall correlation (resolving the

ambiguity), resulting in more reliable correlations C.

Avg

Max

sigmoid

MLP

MLP

Figure A7. Pipeline for soft-attention generation.

When generating shape and occupancy descriptors, we

dynamically adjust the importance of feature channels us-

ing soft-channel attention, inspired by SENet [3]. As il-

lustrated in Fig. A7, we first concatenate the pair of invari-

ant features along the spatial dimension and apply average-

pooling and max-pooling. The pooled outputs are passed

to two shared MLPs followed by a sigmoid activation to

compute channel-wise statistics, which serve as the soft-

attention values for the shape and occupancy descriptors.

The output A is divided by two along the channel dimen-

sion to produce As and Ao, the soft attention weights for

the shape and occupancy descriptors, respectively, each of

which weights the feature channels to enhance relevant in-

formation for each descriptor as in [3].

B.5. Details on training objectives

Circle loss [14]. In the definition of circle loss provided in

the main paper, we omit hyperparameter γ used in the origi-

nal circle loss formulation, for brevity in our demonstration.

The definition of Lcircle is formulated as

E
i∼I



log





∑

j∈Ep(i)

eγ(φ
i,j−∆p)

2 ·
∑

k∈En(i)

eγ(∆n−φi,k)2







 ,

(4)

where γ scales the sharpness of the exponential terms, am-

plifying or reducing the emphasis on outliers and enabling

more stable training and φi,j computes similarity or dissim-

ilarity between a pair of given features.

Point matching loss [10]. We now detail the point match-

ing loss Lp which is jointly used alongside the combina-

tive matching objectives. The point matching loss is a neg-

ative log-likelihood loss on predicted match probabilities

Z ∈ R
(N+1)×(M+1), the dual-normalized assignment ma-

trix with dustbin, the output from the Optimal Transport

layer [10]. Given a set of ground-truth correspondences

C, and the sets of unmatched points, (IP)′ = {x : x ∈
[N]∧x /∈ IP} and (IQ)′ = {x : x ∈ [M]∧x /∈ IQ} where

[K] = {1, . . . ,K}, the point matching loss is defined as

Lp =−
∑

(i,j)∈C

logZi,j

−
∑

i∈(IP)′

logZi,M+1 −
∑

j∈(IQ)′

logZN+1,j , (5)

which enforces the predicted match probabilities to align

closely with the ground-truth matches, ensuring accurate

point-to-point correspondence.

C. Details on Training and Evaluation Setup

C.1. Hyperparameter setup

To determine positive matches between mating surfaces, the

distance threshold was set to τ = 0.018. For the circle

loss [14], we used margin hyperparameters ∆p = 0.1 and

∆n = 1.4, along with a scale factor γ = 24. The channel

sizes for the equivariant feature embedding, shape descrip-

tor, and occupancy descriptor are set to D = 341, ds = 512,

and do = 512, respectively. We use the normalization con-

stant Z =
√
512 to construct the cost matrix C.

C.2. Multi­part assembly details

Following the approach of Lee et al. [5], we extend our

pairwise matching framework CMNet to handle multi-part

assembly in a consistent manner. Specifically, our method

first learns local pairwise compatibilities between part pairs

through pairwise matching, and then estimates globally

consistent poses via pose graph optimization.

Learning Pairwise Compatibility. We construct 2-

part training pairs from all objects in the Breaking Bad

dataset [13], where each object consists of 2 to 20 parts.

Specifically, for each training sample, we randomly select a

source part and choose as its target part the one that shares

the largest ground-truth mating surface area with it. We

train the network for 350 epochs on the everyday subset

and 300 epochs on the artifact subset, using the same

model configurations (e.g., hyperparameters) as in the pair-

wise setup. This training is intended to allow the model to

learn local pairwise compatibilities, which are subsequently

utilized during global optimization in the multi-part setting.

Inference & Pose-Graph Optimization. Given an N -part

object at the inference time, we first predict relative poses

for all
(

N
2

)

part pairs to construct a fully connected pose

graph, as illustrated in Fig. A8.

Figure A8.

Pose graph

example.

In the pose graph, each part Pi

(with i = 1, . . . , N) becomes a node,

and each weighted edge carries a pair-

wise relative pose Tij = {Rij , tij}
along with its information matrix Iij =
(

∑|Pi|
p=1

∑|Pj |
q=1 exp(Z

(ij)
p,q)

)−1

· I6, where

Z(ij) ∈ R
|Pi|×|Pj | denotes the soft assignment matrix be-

tween parts Pi and Pj , obtained via Optimal Transport [10].

To reduce noise and eliminate unreliable matches, we

prune all outgoing edges except the one with the highest

matchability score for each node. We then recover global

poses (R̃i, t̃i) via Shonan Averaging [1], with the largest

part set as an anchor, similar to [5, 7].

GeoTr Jigsaw PMTR Ours GTGeoTr Jigsaw PMTR Ours GT

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

Figure A9. Additional qualitative comparison for pairwise shape assembly.

Wu et al. Jigsaw PMTR Ours GTWu et al. Jigsaw PMTR Ours GT

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

Figure A10. Additional qualitative comparison for multi-part assembly.

Algorithm 1 Synthetic Data Generation Process (train/val)

1: Input: Pattern p

2: Output: 3D mesh pair (Msrc,Mtrg)
3: if p = pattern1 then

4: h← Uniform
(

0, 1

3

)

5: center←
[

0.5, 0.5 + h
]

6: src_points←
[

[0, h], [0, 1], [1, 1], [1, h], center
]

7: trg_points←
[

[0, h], [1, h], center
]

8: else if p = pattern2 then

9: h← Uniform
(

0, 1

3

)

, d← Uniform
(

1

6
, 1

2

)

10: left_center←
[

1

3
, h+ d

]

, right_center←
[

2

3
, h+ d

]

11: src_points←
[

[0, h], [1
3
, h], left_center, right_center, [2

3
, h], [1, h], [1, 1], [0, 1]

]

12: trg_points←
[

[1
3
, h], [2

3
, h], right_center, left_center

]

13: else if p = pattern3 then

14: h← Uniform
(

0, 1

3

)

, r ← Uniform
(

1

6
, 1

2

)

15: θ ← linspace(0, π, n)

16: circle_points←
(

0.5 + r cos θ, h+ r sin θ
)

17: src_points←
[

[0, h], [0.5− r, h], circle_points, [0.5 + r, h], [1, h], [1, 1], [0, 1]
]

18: trg_points←
[

[0.5− r, h], circle_points, [0.5 + r, h]
]

19: Psrc ← Polygon(src_points), Ptrg ← Polygon(trg_points)
20: Msrc ← Extrude(Psrc, z), Mtrg ← Extrude(Ptrg, z)

Algorithm 2 Synthetic Data Generation Process (test)

1: Input: Pattern p

2: Output: 3D mesh pair (Msrc,Mtrg)
3: if p = pattern4 then

4: h← Uniform
(

0, 1

3

)

5: center←
[

Uniform
(

1

6
, 5

6

)

, Uniform
(

1

6
, 1

2

)

+ h
]

6: src_points←
[

[0, h], center, [1, h], [1, 1], [centerx, centery + (1− h)], [0, 1]
]

7: trg_points←
[

[0, h], center, [1, h]
]

8: else if p = pattern5 then

9: h← Uniform
(

0, 1

3

)

, d← Uniform
(

1

6
, 1

2

)

10: x1 ← Uniform
(

0.5

6
, 2.5

6

)

, x2 ← Uniform
(

3.5

6
, 5.5

6

)

11: left_center←
[

x1, h+ d
]

, right_center←
[

x2, h+ d
]

12: src_points←
[

[0, h], [x1, h], left_center, right_center, [x2, h], [1, h],

13: [1, 1], [x2, 1], [x2, d+ 1], [x1, d+ 1], [x1, 1], [0, 1]
]

14: trg_points←
[

[x1, h], left_center, right_center, [x2, h]
]

15: else if p = pattern6 then

16: h← Uniform
(

0, 1

3

)

, r ← Uniform
(

1

6
, 1

3

)

17: c← Uniform(r, 1− r)
18: θ ← linspace(0, π, n)

19: circle_points_down←
(

0.5 + r cos θ, h+ r sin θ
)

20: circle_points_up← update each point’s y as y ← y + (1− h).

21: src_points← vstack

(

[[0, h], [c− r, h], circle_points_down, [c+ r, h], [1, h], [1, 1], [c+ r, 1],

22: circle_points_up, [c− r, 1], [0, 1]]
)

23: trg_points← vstack

(

[[c− r, h], circle_points_down, [c+ r, h]]
)

24: end if

25: Psrc ← Polygon(src_points), Ptrg ← Polygon(trg_points)
26: Msrc ← Extrude(Psrc, z), Mtrg ← Extrude(Ptrg, z) =0

References

[1] Frank Dellaert, David M Rosen, Jing Wu, Robert Mahony,

and Luca Carlone. Shonan rotation averaging: Global opti-

mality by surfing so (p)ˆ n so (p) n. In ECCV, 2020. 6

[2] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard,

Andrea Tagliasacchi, and Leonidas J Guibas. Vector neu-

rons: A general framework for so (3)-equivariant networks.

In ICCV, 2021. 4

[3] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In CVPR, 2018. 5, 6

[4] Jialei Huang, Guanqi Zhan, Qingnan Fan, Kaichun Mo, Lin

Shao, Baoquan Chen, Leonidas Guibas, and Hao Dong. Gen-

erative 3d part assembly via dynamic graph learning. In

NeurIPS, 2020. 1

[5] Nahyuk Lee, Juhong Min, Junha Lee, Seungwook Kim,

Kanghee Lee, Jaesik Park, and Minsu Cho. 3d geometric

shape assembly via efficient point cloud matching. In ICML,

2024. 2, 3, 6

[6] Jun Li, Chengjie Niu, and Kai Xu. Learning part generation

and assembly for structure-aware shape synthesis. In AAAI,

2020. 1

[7] Jiaxin Lu, Yifan Sun, and Qixing Huang. Jigsaw: Learning

to assemble multiple fractured objects. In NeurIPS, 2023. 1,

2, 3, 6

[8] Shitong Luo, Jiahan Li, Jiaqi Guan, Yufeng Su, Chaoran

Cheng, Jian Peng, and Jianzhu Ma. Equivariant point cloud

analysis via learning orientations for message passing. In

CVPR, 2022. 4

[9] Zheng Qin, Hao Yu, Changjian Wang, Yulan Guo, Yuxing

Peng, and Kai Xu. Geometric transformer for fast and robust

point cloud registration. In CVPR, 2022. 3

[10] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,

and Andrew Rabinovich. Superglue: Learning feature

matching with graph neural networks. In CVPR, 2020. 6

[11] Gianluca Scarpellini, Stefano Fiorini, Francesco Giuliari,

Pietro Moreiro, and Alessio Del Bue. Diffassemble: A uni-

fied graph-diffusion model for 2d and 3d reassembly. In

CVPR, 2024. 1

[12] Nadav Schor, Oren Katzir, Hao Zhang, and Daniel Cohen-

Or. Componet: Learning to generate the unseen by part syn-

thesis and composition. In ICCV, 2019. 1

[13] Silvia Sellán, Yun-Chun Chen, Ziyi Wu, Animesh Garg, and

Alec Jacobson. Breaking bad: A dataset for geometric frac-

ture and reassembly. In NeurIPS Datasets and Benchmarks

Track, 2022. 1, 6

[14] Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang,

Liang Zheng, Zhongdao Wang, and Yichen Wei. Circle

loss: A unified perspective of pair similarity optimization.

In CVPR, 2020. 6

[15] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic

graph cnn for learning on point clouds. ACM TOG, 38(5):

1–12, 2019. 4

[16] Zhengqing Wang, Jiacheng Chen, and Yasutaka Furukawa.

Puzzlefusion++: Auto-agglomerative 3d fracture assembly

by denoise and verify. In ICLR, 2025. 1

[17] Rundi Wu, Yixin Zhuang, Kai Xu, Hao Zhang, and Bao-

quan Chen. Pq-net: A generative part seq2seq network for

3d shapes. In CVPR, 2020. 1

[18] Ruihai Wu, Chenrui Tie, Yushi Du, Yan Zhao, and Hao

Dong. Leveraging se (3) equivariance for learning 3d ge-

ometric shape assembly. In ICCV, 2023. 1, 3

[19] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and

Vladlen Koltun. Point transformer. In ICCV, 2021. 4

	Additional Experimental Results
	Results on Vanilla Breaking Bad Dataset
	Further Analysis on Combinative Matching
	Toy dataset with local ambiguity
	Experiments

	Additional orientation analysis
	Additional correlation heatmap analysis
	Additional qualitative results

	Additional Network Details
	Equivariant feature extractor
	Orientation hypothesizer
	Invariant feature computation
	Shape and occupancy matcher
	Details on training objectives

	Details on Training and Evaluation Setup
	Hyperparameter setup
	Multi-part assembly details

