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Detailed Architecture. Each attribute is decoded using
an MLP g, a three-layer, fully connected network. The in-
termediate layers contain 128 units each and use ReLU acti-
vation, except for the output layer. The four decoder MLPs
have a total size of 0.16 MB, which is included in the final
size results. We applied a sigmoid function to ensure the
opacity values are within the range [0, 1]. For scaling, we
first used the sigmoid function, then scaled the values to the
range [−10,−0.1], and followed with an exponential func-
tion. Finally, the predicted attributes are used as inputs to
the original 3DGS rasterizer.

The feature plane learning rate is set to 0.005 using
the Adam optimizer. Additionally, we apply learning rate
schedulers to gradually decrease the learning rates during
training. All other settings, including the learning rate for
point positions, follow the original 3DGS.

Qstep Feature Plane Size (MB) PSNR
20 16.6 31.55
22 14.2 31.66
24 11.5 31.54
26 9.07 31.75
28 8.45 31.72
210 12.1 31.77
212 17.8 31.32

Table 1. Effect of Qstep on the proposed method for the ’bonsai’
scene, with fixed λent across all experiments.

Analysis for Quantization Step Size. To effectively op-
timize the standard video codec process, the quantization
step size Qstep is crucial. During training, the uniform
quantizer with a Qstep operates on floating-point trans-
formed coefficients. However, it is important to note that
the plane is scaled to 16-bit integers for compression. The
difference between the pixel domain and the frequency do-
main makes it difficult to determine the proper quantiza-
tion step size. Tab. 1 shows the impact of different quan-
tization step sizes Qstep on our proposed method’s perfor-
mance. Throughout all experiments, we maintained a con-
stant λent to ensure consistent comparison. Since video
codecs use predefined quantization matrix for compression,
if the Qstep is too small or too large, entropy modeling
may not work correctly. Our experiments demonstrate that
a Qstep of 28 produces better results.

Configurations for Video Coding. The configuration
parameters of traditional codecs influence the performance
of the model. We provide the detailed settings used to ob-

tain our experimental results, ensuring reproducibility of
our findings.

The FFmpeg x265 (up to 12bit) command lines for loss-
less encoding of point positions used in our paper are:

ffmpeg
-y
-pix_fmt gray16be
-s {width}x{height}
-framerate {framerate}
-i {input file name}
-c:v libx265
-x265-params
lossless=1
{bitstream file name}

The command lines for HM 16.0 (RExt) compression
are:

TAppEncoder
-c encoder_randomaccess_main_rext.cfg
--InputFile={input file name}
--SourceWidth={width}
--SourceHeight={height}
--InputBitDepth=16
--InternalBitDepth=16
--OutputBitDepth=16
--InputChromaFormat=400
--FrameRate={framerate}
--FramesToBeEncoded=32
--QP={qp}
--BitstreamFile={bitstream file name}

As mentioned in the manuscript, the HM configuration
used in the experiments has all QP offsets between frames
set to 0. All other settings followed the default configura-
tion. The modified configuration is as follows:

encoder_randomaccess_main_rext.cfg
# Type POC QPoffset (...)
Frame1: B 16 0
Frame2: B 8 0
Frame3: B 4 0
Frame4: B 2 0
Frame5: B 1 0
Frame6: B 3 0
Frame7: B 6 0
Frame8: B 5 0
(...)
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Figure 1. Visualization of channel levels in XZ plane for the ‘Bonsai’ scene. With dynamic wc, the lower-level channels preserve more
information, whereas the higher-level channels are largely minimized due to the higher λent weight assignment.

Analysis of Bit Allocation. Fig. 1 illustrates the results
of each channel learned through our proposed bit alloca-
tion method. The signals in higher-level channels exhibit
increased sparsity, making them more challenging for video
coding. However, since these channels have lower impact
on visual quality, most regions are minimized through al-
locating higher entropy λent for each level. This strategic
allocation results in improved rate-distortion performance
compared to conventional approaches.
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Figure 2. RD curves with video QP adjustment. Controlling
rate-distortion with video QP is worse than using λent with QP=1.

Performance analysis of QP adjustment. Beyond ad-
justing the parameter λent, the rate-distortion trade-off can
also be controlled by modifying the quantization parameter
(QP) in video codecs such as HM or FFmpeg. However, our
experimental results demonstrate that modifying the video
codec QP yields inferior performance compared to adjust-
ing λent, as shown in Fig. 2. Our results suggest this may
be because video codecs focus exclusively on feature plane

restoration rather than the rendering view quality.

(a) sphere contraction (b) piecewise contraction

Figure 3. Visualization of each contraction method for the
‘Bonsai’ scene. (a) sphere contraction and (b) piecewise-
projective contraction.

Contraction methods. Fig 4 presents the feature plane
results for each contraction strategy. Although there is no
significant difference in reconstruction quality between the
two methods, piecewise contraction is expected to perform
better in block-wise DCT due to the spatial correlation of
the features. Experimental results demonstrate a slight im-
provement in size reduction when using piecewise contrac-
tion.

Per-scene Quantitative Results. We evaluated the per-
formance on various datasets for novel view synthesis. Our
analysis includes per-scene results for the Mip-NeRF 360,
Deep Blending, and Tank&Temples datasets.



Scene bicycle flowers garden stump tree hill room counter kitchen bonsai Avg.
PSNR 25.19 21.37 27.61 26.59 23.07 30.99 28.47 30.73 31.71 27.30
SSIM 0.746 0.593 0.853 0.781 0.648 0.922 0.898 0.916 0.934 0.810
LPIPS 0.265 0.380 0.133 0.236 0.346 0.217 0.208 0.137 0.202 0.236

Storage (MB) 9.82 10.25 15.22 14.30 9.92 7.91 6.25 7.68 6.71 9.78

Table 2. Per-scene results evaluated on Mip-NeRF 360 dataset.

Compact3DGS+PP

43.2MB 

26.72dB/0.831/0.158

GT Ours

15.2MB 

27.59dB/0.853/0.132

CompGS

30.7MB 

27.47dB/0.855/0.131

Compact3DGS+PP

24.6MB 

30.48dB/0.919/0.130

GT Ours

7.7MB

30.73dB/0.916/0.137

CompGS

10.4MB 

30.67dB/0.912/0.146

Figure 4. Qualitative results for visual comparison for Mip-NeRF360 dataset. Each subfigure displays the storage size along with the
PSNR, SSIM, and LPIPS metrics. Detailed observation is encouraged by zooming in.



Dataset Tanks&Temples Deep Blending
Scene train truck Avg. drjohnson playroom Avg.
PSNR 22.08 25.19 23.63 29.22 30.42 29.82
SSIM 0.801 0.882 0.842 0.904 0.909 0.907
LPIPS 0.226 0.158 0.192 0.250 0.252 0.251

Storage (MB) 6.21 8.72 7.46 9.39 7.86 8.62

Table 3. Per-scene results evaluated on Tank&Temples and Deep Blending.

Compact3DGS+PP

19.4MB 

30.30dB/0.900/0.259

GT Ours

7.9MB 

30.42dB/0.909/0.252

CompGS

8.9MB 

30.12dB/0.901/0.267

Compact3DGS+PP

22.6MB 

25.02dB/0.870/0.163

GT Ours

8.8MB 

25.09dB/0.878/0.158

CompGS

10.1MB 

25.14dB/0.866/0.176

Figure 5. Qualitative results for visual comparison for DeepBlending and T&T dataset. Each subfigure displays the storage size along
with the PSNR, SSIM, and LPIPS metrics. Detailed observation is encouraged by zooming in.


