Continual Multiple Instance Learning with Enhanced Localization
for Histopathological Whole Slide Image Analysis

Supplementary Material

S1. Experimental Setups

S1.1. Details on Datasets

We conducted tumor detection using the CAMELYON-
16 (CM-16) [S1] and Pathology AI Platform (PAIP) [S8,
S9, S18] datasets to evaluate continual and joint instance
classification. For continual bag classification, we con-
ducted tumor subtyping using The Cancer Genome Atlas
(TCGA) [S17].

CAMELYON-16 (CM-16) is a WSI dataset for diag-
nosing breast cancer metastases in sentinel lymph nodes.
It consists of 400 WSIs with corresponding pixel-level tu-
mor annotations, officially split into 270 training slides and
130 test slides. Following [S3, S13], we merged the official
training and test sets and performed three-times threefold
cross-validation to ensure that each slide is used for both
training and testing. This cross-validation strategy helps
mitigate the impact of data partitioning and random seed
selection on model evaluation. The numbers of tumor and
non-tumor slides in CM-16 are summarized in Tab. S1.

Repository Organ # normal slides | # tumor slides
CM-16 Sentinel Lymph Nodes 241 159
Liver 251 252
Prostate 299 300
PAIP Pancreas 207 207
Colon 449 449

Table S1. Datasets for continual instance classification for WSI tu-
mor detection, constructed by organ datasets from CAMELYON-
16 (CM-16) [S1] and Pathology Al Platform (PAIP) [S8, S9, S18].

Pathology Artificial Intelligence Platform (PAIP) is
a platform for developing learning-based models for WSI
analysis, particularly for tumor diagnosis. PAIP consists of
hundreds of WSIs across six different organs, each with cor-
responding pixel-level tumor annotations. Among the avail-
able organ datasets, we utilized the liver, prostate, pancreas,
and colon datasets. However, these datasets only provide
tumor slides, meaning that all slide-level labels correspond
to the tumor class. Since application to a MIL setup re-
quires to leverage both tumor and normal slide-level an-
notations as weak labels, we exploited the MIL formula-
tion where each slide is treated as a bag of multiple in-
stances (patches). Specifically, for each organ dataset in
PAIP, we randomly split the slides into two halves — one
half designated as tumor slides, and the other as normal
slides. For the normal slides, we removed all tumor regions
prior to patch extraction to ensure they only contain normal
patches. The resulting numbers of tumor and normal slides

for each organ in PAIP are summarized in Tab. S1. Similar
to CAMELYON-16, we applied three-times threefold cross-
validation to each organ dataset to mitigate the effect of data
partitioning and random seed selection on model evaluation.

The Cancer Genome Atlas (TCGA) is a large-scale re-
search project jointly conducted by the National Cancer In-
stitute (NCI) and the National Human Genome Research
Institute (NHGRI). It aims to systematically analyze ge-
nomic alterations in various types of cancer. TCGA pro-
vides WSIs from diverse organs along with information on
corresponding tumor subtypes, enabling weakly-supervised
tumor subtyping tasks. For continual bag classification, we
conducted continual tumor subtyping tasks across four or-
gans from TCGA like NSCLC, BRCA, RCC, and ESCA,
following the setup of ConSlide [S6]. Detailed statistics for
each dataset are summarized in Tab. S2.

Dataset Tumor type # slides
NSCLC Lung adenocarcinoma (LUAD) 492
Lung squamous cell carcinoma (LUSC) 466
Invasive ductal (IDC) 726
BRCA Invasive lobular carcinoma (ILC) 149
RCC Clear cell renal cell carcinoma (CCRCC) 498
Papillary renal cell carcinoma (PRCC) 289
ESCA Esophageal adenocarcinoma (ESAD) 65
Esophageal squamous cell carcinoma (ESCC) 89

Table S2. Datasets for continual bag classification for WSI tumor
subtyping tasks, constructed by organ datasets from The Cancer
Genome Atlas (TCGA) [S17].

S1.2. Details on Evaluation Metrics

S1.2.1. Continual Instance Classification.

Instance-level accuracy (Acciys) calculates the average
instance-level accuracy across tasks after completing the
training of all continual tasks. Let R™' denote the instance-
level accuracy on the [-th task after training on the n-th task.
For a total of N continual tasks, Acciyg is computed as:
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Intersection over Union (IoU) and Dice score after the
final task in continual MIL can be measured in a similar
manner. Let IoU,,; and Dice,; denote the IoU and Dice
score, respectively, on the [-th task after training on the n-th
task. Then, the IoU and Dice scores after completing all N
continual tasks are measured as:
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Forget on instance-level accuracy (Forget;,s) quanti-
fies the degree of forgetting of the MIL model on previously
learned knowledge as new tasks are introduced, measured in
terms of instance-level accuracy. For its task, it measures the
gap between the best performance of the task attained dur-
ing training on sequential tasks and the final performance on
the same task after training on all subsequent tasks. Then, it
averages the measures over all tasks as:
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S1.2.2. Continual Bag Classification.

Bag-level accuracy (Accp,g), similar to continual instance
classification, measures the bag-level accuracy after train-
ing on all N continual tasks, which is defined as:
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where R:’f}g is the bag-level accuracy on the [-th task after

training on the n-th task.
Forget on bag-level accuracy (Forgety,g) is defined
analogously to Forgeti,g as:
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Masked bag-level accuracy (M.Accp,g) measures the
average accuracy computed by restricting classification to
only the classes within a task when the task index is given
at test time. Let Rll(,blag be the bag-level accuracy of [-th task
after training on N-th task measured within it class set, un-
der the assumption that the test class is known to belong to

the [-th task. Then, M.Accy,, can be represented as:
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S1.3. Further Implementation Details

We followed CLAM [S13] for patch and feature extrac-
tion. Instead of utilizing ResNet-50 like previous works
[S7, S12, S15, S19], we utilized UNI [S4], the foundation
model for computational pathology, as pre-trained feature
extractor since it provides improved patch-wise representa-
tion for a WSI, resulting in overall enhanced localization
results across all MIL and CL methods.

For training continual MIL, we trained each task for 100
epochs. For optimization, we adopted Adam [S10] with an
initial learning rate of 1 x 10~* and a weight decay of
1 x 1075, To adjust the learning rate during training, we ap-
plied a cosine annealing schedule. Due to the large size of
whole slide images (WSIs), we used a batch size of 1. All
experiments for both continual and MIL approaches were
conducted on a single NVIDIA A6000 GPU.

S2. Further Discussions on CoMEL
S2.1. Efficiency studies

Tab. S3 compares the computation and memory efficiency
of GDAT, RRT-MIL, and smAP. Compared to RRT-MIL,
GDAT achieves improved VRAM memory consumption,
FLOPs, and inference latency, all with a comparable num-
ber of learnable parameters. Note that from Tab. 1, GDAT
outperforms RRT-MIL not only in terms of MIL with lo-
calization performance but also in terms of memory and
computational efficiency. While smAP exhibits lower mem-
ory consumption than GDAT, it suffers from significantly
higher inference latency due to the computation of the ad-
jacency map. Although smAP enhances localization perfor-
mance as shown in Tab. 1, its lack of a scalable module
hinders effective synergy with BPPL.

Methods |[RRT-MIL |smAP|GDAT
Params (M) 6.00 0.60 | 6.42
VRAM (G) 10.7 3.6 8.8
FLOPs (G) 574 20.6 | 23.4

Latency (ms)| 3.36 3526 | 2.58

Table S3. Efficiency analysis of GDAT and OWLoRA.

Tab. S4 compares the memory efficiency of OWLoRA
with that of ER and ConSlide. ER and ConSlide are
rehearsal-based approaches that require an additional mem-
ory buffer, whereas OWLoRA relies on additional learn-
able parameters. Then, it is evident that OWLoRA is more
memory-efficient than the baselines comparing the memory
size of their rehearsal buffers to the size of the additional
parameters in OWLoRA.

Methods ER/30 |ConSlide/30 OWLoRA
Params (M) - - 4.6 x 10"
Buffer (M) [4.5 x 10%| 4.7 x 102 -

Table S4. Efficiency analysis of OWLoRA.

S2.2. Pseudo-label Accuracy of BPPL

To evaluate the robustness of BPPL in terms of pseudo-
label quality, we measured the pseudo-label accuracy for
each task during training continual instance classification.
From Fig. S1(a), BPPL consistently improves the quality
of pseudo-labels as training progresses, thereby enhancing
localization performance.
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increasing F' deteriorated the performance since unrelated
instances could be grouped together and reduce the repre-
sentation diversity for instances by the attention of GDAT.
Meanwhile, increasing the number of attention layers in
GDAT resulted in worse performance due to overfitting.

Figure S1. Pseudo-label accuracy of BPPL and analysis on low-
rank property of MIL tasks, supporting the rationale of OWLoRA.

S2.3. Low-rank Property of MIL Tasks

Through extensive experiments on continual instance clas-
sification, we demonstrated that OWLoRA effectively mit-
igates forgetting in both bag- and instance-level classifi-
cation. This is attributed to the low-rank nature of each
task and OWLoRA’s orthogonality-based regularization.
Fig. S1(b) illustrates the number of new singular values
required to capture 99% of the total norm of singular val-
ues (across 3 runs), confirming the inherent low-rankedness.
Forgetting is further mitigated by enforcing orthogonal sub-
spaces, as supported by Tab. S9 and Tab. S10.

S2.4. Ablation studies on GDAT

The term 7V in Eq. (4) is introduced to mitigate the re-
duction in diversity among instance features caused by the
grouped attention mechanism. Here, 7 is a hyperparameter.
Tab. S5 shows the performance of continual instance clas-
sification on the combined CM-16 and PAIP datasets with
different values of 7. We can see that smaller 7 resulted in
worse instance-level accuracy since the reduced diversity
among instance features leads to poorer instance discrim-
inability. Meanwhile, when 7 becomes excessively large,
the effect of attention-based feature refinement diminishes,
ultimately resulting in degraded performance.

F |#of layers ACCinst (T) Forgetinst (J/) ACCbag (T)

8 2 74.20+£2.24 | 14.23+2.04 | 62.92+2.52
32 2 72.25+2.56 | 14.57 £2.66 | 61.87 +2.40
64 2 68.23 £3.23 | 16.23 £2.43 | 56.24 + 3.24
16 2 74.15+1.97|13.05+2.31|62.64+2.14
16 1 72.43+£2.39 | 14.54 £2.46 | 60.83 +2.32
16 4 74.45+2.08 | 13.33+£1.94 | 62.82+1.72
16 8 73.20+£2.55 | 13.92+2.72 | 61.33 £2.40
16 12 72.01 £2.04 | 14.90 £ 2.44 | 60.89 £ 2.06

Table S6. Ablation studies of the effect of grouping window factor
F' and the number of attention layers in GDAT (3 runs). The row
with bold represents the selected configurations.

S2.5. Ablation studies on BPPL

We investigated the impact of different hyper-parameters
on BPPL performance. Relevant hyper-parameters include
temperature 7" and coefficient 7. Tab. S7 shows that increas-
ing T too much deteriorates the performance due to small
probability values, while decreasing 7' too much deterio-
rates the performance due to large probability values. Ad-
ditionally, increasing 7 too much deteriorated the perfor-
mance due to strict pseudo-labeling, while decreasing 7 de-
teriorated the performance due to inaccurate pseudo-labels.

7 ACCipst (1) Forgetinst ) ACCbag ()
0 68.94 4+ 2.49 14.96 + 2.39 62.11 £ 1.57
0.01 69.32 + 2.74 13.39 £ 2.52 61.72 +1.92
0.05 74.13 £ 2.39 12.94 + 2.62 62.84 £ 1.61
0.1 74.15 +1.97 13.05 +£2.31 62.64 +2.14
0.5 73.93 £ 1.72 14.33 £ 2.10 60.23 + 1.75
1 73.24 +2.19 13.93 £ 2.38 58.18 +2.30
5 70.98 +1.89 15.47 + 1.66 56.15 4+ 2.08
10 69.17 £ 2.09 14.76 £ 2.39 53.21 +1.82

T | v | ACCixt(1) | Forgetyy (1) | ACChay (1)
0.01 | 0.35 | 60.32 + 3.52 13.02 +£3.09 | 60.92 + 2.10
0.05 | 0.35 | 68.23 +2.69 12.43 +2.72 61.52 +1.93
0.1 1035| 73.23£2.46 13.49 £ 2.42 62.04 + 2.01
1 035 | 73.12+2.98 13.92 +£2.19 62.40 £1.92
5 0.35 | 62.23 £ 2.82 14.92 £+ 2.39 61.24 + 1.82
05 |035|74.15+£1.97 | 13.05+2.31 | 62.64 +2.14
0.5 | 0.05 | 61.23 +3.22 15.12 £ 2.72 61.23 £+ 2.92
05 | 0.1 64.23 + 2.32 17.23+1.98 | 61.63 +1.62
0.5 | 025 70.37+2.23 14.62 £+ 2.93 61.73 £1.40
0.5 [ 045 | 71.24+£2.42 14.34 £+ 3.09 63.20 + 2.20

Table S5. Ablation studies of the effect of 77 in GDAT (3 runs). The
row with bold represents the selected configurations.

We investigated the impact of different hyper-parameters
on GDAT performance. Relevant hyper-parameters include
the grouping window factor F' and the number of attention
layers in GDAT. When the grouping window factor is set
to F, the number of instances within a group is F2, and
the number of groups is m = M/F?. Tab. S6 shows that

Table S7. Ablation studies of the effect of 7" and 7 in BPPL (3
runs). The row with bold represents the selected configurations.

We also investigated the impact of additional hyper-
parameters, including the regularization coefficients A; and
Ao. Tab. S8 shows that increasing A; too much deteriorated
the performance due to placing too much weight on instance
localization, while decreasing \; deteriorated the perfor-
mance on instance classification due to less weight on train-
ing for localization. Furthermore, increasing Ao too much



deteriorated the performance due to excessive bag separa-
tion, while decreasing )5 deteriorated the performance due
to insufficient bag separation.

M | Az | ACCig (D) | Forgetyy () | ACChy (1)
0.1 1 72.32 +£2.33 13.89 + 2.87 62.47 +1.98
1 1 73.84 +£2.93 13.24 + 2.52 62.92 4+ 2.52
5 1 67.23 +£1.92 11.23 +1.52 57.24 £1.62
10 1 61.23 £+ 2.32 9.23 +2.24 54.23 £+ 2.20
0.5 1 74.15+1.97 13.05 +2.31 62.64+2.14
0.5 0.1 70.92 £ 2.60 17.34 +2.72 62.82 +2.12
0.5 0.3 TL.72 £2.72 15.94 + 2.11 62.52 + 1.82
0.5 3 70.24 +1.82 16.68 + 1.43 61.24 + 2.67
0.5 10 62.23 + 2.53 12.35+ 3.19 55.23 £+ 3.06

Table S8. Ablation studies of the effect of A1 and A2 in BPPL (3
runs). The row with bold represents the selected configurations.

S2.6. Ablation studies on OWLoRA

We investigated the impact of e for first task and the rank d
for subsequent tasks in OWLoRA. Tab. SO shows decreas-
ing € deteriorated the performance on instance classifica-
tion. It is attributed to the forgetting of the first task. Mean-
while, decreasing the rank d resulted in worse instance clas-
sification by the reduced adaptability to new tasks.

€ d ACCipst (1) Forgetinst (@5) ACChag M
0.5 16 68.23 £ 2.30 19.47 + 2.73 56.10 £ 2.49
0.7 16 70.42 +2.29 16.78 +2.19 59.35 £ 2.44
0.9 16 71.23 +2.49 15.04 £+ 2.59 61.23 £ 2.87

0.999 16 74.22 + 2.05 12.99 £+ 2.10 62.24 +£2.19
0.99 16 74.15 + 1.97 13.05 £ 2.31 62.64 + 2.14
0.99 2 67.23 £1.88 20.44 +1.84 58.38 £ 1.61
0.99 4 70.04 £1.71 17.05 £ 1.79 59.92 +2.04
0.99 8 72.86 + 2.65 14.98 +1.94 61.04 £1.98
0.99 32 74.19 + 2.04 13.37 + 2.46 63.33 £ 2.46

Table S9. Ablation studies of the impact of € for first task and d for
subsequent tasks in OWLoRA for continual instance classification
(3 runs). The row with bold represents the selected configurations.

We further investigated the impact of the hyper-
parameter A3 on the performance of OWLoRA. Tab. S10
shows that increasing A3 deteriorated the performance be-
cause it excessively enforces the orthogonality on the basis
for mitigating forgetting, which hinders to learn new tasks.
Meanwhile, decreasing A3 too much also deteriorated the
performance because of the inability to mitigate forgetting.

S2.7. Additional Structural Ablation Studies

We further performed additional structural ablation stud-
ies to investigate the design choices of GDAT and BPPL.
From Tab. S11, GDAT (double attention) achieves compet-
itive performance to single attention with better scalability.
From Tab. S12, BPPL fails to learn discriminative proto-
types without Ly, reducing performance. Since three fil-

)\3 ACCinst (T) Forgetinst (\L) ACCbag (T)
0.1 70.32+2.91 17.50 £ 2.72 55.33 £3.24
0.5 72.24 +2.33 14.88 +2.29 60.23 £ 2.57
1 74.15+1.97 13.05 +2.31 62.64 +2.14
5 74.21 £2.04 13.08 £ 2.46 61.94 £ 2.22
10 71.39 £ 1.64 16.42 £1.82 60.92 £ 1.50

Table S10. Ablation studies of the effect of A3 in OWLoRA (3
runs). The row with bold represents the selected configurations.

tering factors in BPPL are crucial for high-quality pseudo-
labels, removing any of them leads to degradation in local-
ization.

Model | ACCpyg (1) | ACCinst (1) IoU (D) Dice (1)
Single Attn| 73.53 4+ 1.64 | 80.87 +1.82 | 50.69 +2.74 | 62.32 £ 2.35

GDAT [72.94 +1.28|80.55 +2.34|50.35 + 3.43|61.70 + 2.87
Table S11. Comparison of single attention and GDAT (double at-
tention) when combined with BPPL on merged dataset (3 runs).

Ablating Comp. | ACCjug (1) |Forget,, (1)| Dice (1) ACChyq (1)
CoMEL 74.15 + 1.97 | 13.05 + 2.31 | 52.27 + 2.42 | 62.64 + 2.14
w/o Lgep 69.82 +2.29 | 17.86 + 2.43 | 45.60 + 2.56 | 62.84 + 2.18

w/o l(Y = Y) 66.2 + 2.1 15.0£1.9 31.6+24 60.4+ 1.6
w/o L(p, > 71) |69.28 £1.76|15.84 +1.96 | 37.51 £ 2.65|61.40 & 1.66
W/0 1(Vag € Vpos) | 66.54 +1.72 | 15.81 4 1.73 | 34.77 & 2.23 | 60.89 + 2.32

Table S12. Ablation studies of loss components and filtering fac-
tors in BPPL on continual instance classification (3 runs).

S3. Additional Quantitative Results

S3.1. Results on Continual Instance Classification

Tab. S13 presents additional quantitative results for tumor
detection across the sequential datasets of combined CM16
and PAIP, but the sequence is reversed from the experi-
ment in the main text. That is, the sequence is: colon, pan-
creas, prostate, liver, and sentinel lymph nodes. From the
results for ACCy,z and ACCiyg, we observed that while
rehearsal-based approaches mitigated forgetting in bag clas-
sification with better performance than regularization-based
approaches, they still suffered from substantial forgetting in
instance classification similar to our experiment in the main
text. On the other hand, InfLoRA outperformed them in
both ACCj, and Forget;,s, with competitive performance in
terms of ACCp,g also similar to our initial experiment. Upon
the LoRA-based CL approach, our CoMEL achieved the
best performance across all metrics. In particular, COMEL
outperformed in terms of IoU and Dice by a large margin,
demonstrating its effectiveness in preserving localization in
the continual MIL even when the sequence is reversed.

S3.2. Results on Continual Bag Classification

To further evaluate the performance on continual bag clas-
sification, we compared CoMEL against the same base-



IL Type Method ACCipst (1) Forget; (1) IoU (1) Dice (1) ACCyaq (1)
Upper Bound Joint (Full label) 90.32 £3.34 - 67.72 £2.04 77.23 £2.39 75.97£3.71
Joint (Weak label) 79.50 £2.72 - 51.67 +£2.19 61.09 &+ 2.64 72.28 £ 3.49

Lower Bound Finetune 56.00 £2.17 29.12 £ 3.37 10.82 + 2.30 18.71 £2.39 9.42 £ 3.58
Regularization-based EWC 60.65 £ 2.88 23.79 £2.37 13.81 £ 3.00 20.75 £ 2.52 15.37£2.79
LwF 61.83 £2.87 24.30 £ 2.26 16.29 + 2.92 23.96 £3.19 18.82 + 3.23

A-GEM/30 63.19 £ 3.33 22.78 £3.39 18.48 +2.61 25.23 £3.64 38.65 £ 2.57

ER/30 63.27 £2.83 23.01 £3.72 17.16 £ 3.11 24.80 £+ 3.08 43.70 £2.31

Rehearsal-based ER/100 67.09 £+ 3.28 19.49 £ 2.84 21.29 £3.02 29.12 £3.30 44.82 + 3.43
DER++/30 65.83 +£2.74 21.76 + 3.00 21.03 £3.11 28.06 £ 2.52 45.79 + 3.02

ER-ACE/30 66.64 £ 3.58 20.84 £3.10 17.64 + 3.40 24.83 £3.19 48.02 £ 3.63

ConSlide/30 65.52 £ 3.12 21.27£3.13 19.97 £ 2.56 25.67 £ 3.60 52.92 £ 3.29

Prompt-tuning-based QPMIL-VL [S5] 66.37 £2.21 20.51 £2.17 25.15£2.35 34.28 £2.19 54.83 £ 2.39
LoRA finetune 61.27 £ 3.03 22.95+2.45 21.44 £3.02 28.65 + 3.72 28.01 +£3.45

LoRA-based InfLoRA 67.60 £ 2.84 20.37 £ 3.65 30.33 £ 3.42 39.54 £3.14 51.53 £2.61
CoMEL (Ours) 70.65+2.84 | 16.93+2.79 | 38.81+3.28 | 48.22+3.69 | 57.72+3.26

Table S13. Additional quantitative results of CL methods on instance classification in the reversed continual MIL setup. The best and
second best results are marked as bold and underline. Each experiment consisted of 10 runs. The experiments were conducted on five
sequential organ datasets from combined CM-16 and PAIP. For baselines, we applied the CL approaches upon our GDAT+BPPL, except
for ConSlide. All metrics are reported in percentages. COMEL achieved the highest performance across all metrics while minimizing the

forgetting.

Model ACCpag (1) AUCpaq (1 Flpag (1) ACCinst (1) IoU (1) Dice (1)
ABMIL [S13] 91.13 +1.34 94.21 +£1.07 86.42 £ 1.39 77.53 £2.28 38.22 £ 3.01 49.33 £2.71
DS-MIL [S12] 90.91 +£1.59 93.83£1.24 86.11 £1.48 72.18 £2.17 28.59 £2.64 37.81 £2.42
TransMIL [S14] 91.51 £1.33 94.02 £1.19 87.25 £1.36 76.03 £ 2.51 35.11 £2.41 45.08 +£2.29
RRT-MIL [S16] 93.23 £1.08 96.14 +1.13 89.53 £ 0.94 73.44 £1.98 3214 £1.97 41.01 £2.14
smAP [S2] 91.42+1.21 94.06 £ 1.38 87.63 £1.31 86.01 +1.95 47.12 4+ 2.51 59.11 £ 2.67
GDAT (Ours) 93.21+1.31 96.56 +1.14 90.02 £0.97 78.98 £ 2.36 39.91 £2.74 51.61 £ 2.53
GDAT+BPPL (Ours) 93.04 £ 1.42 95.74 £1.25 89.62 £1.27 87.73 £2.61 53.21 +£3.04 64.17 £ 3.23

Table S14. Comparison of different MIL models on a single dataset CM-16. We evaluated bag classification using ACCpag, AUCpye, and
Flpag. For instance classification, We evaluated using ACCips, IoU, and Dice score. The best and second-best results are marked as bold
and underline, respectively. Each experiment consisted of 10 runs. Our proposed method achieved the best performance across all metrics,

demonstrating its superiority in instance-level classification.

Method ACCyyq (1) Forgethag ) | MLACCgq (1)
Joint 91.18 £ 2.31 - 93.42 + 2.53
Finetune 24.41 +3.74 | 66.13 +£3.87 | 79.36 4 3.43
EWC 25.02+4.11 | 64.58 + 3.98 | 84.02 + 3.66
LwF 26.61 +£3.73 | 62.35+3.40 | 87.91 + 3.94
A-GEM/30 45.62 +4.03 | 48.42+4.14 | 87.44+4.38
ER/30 67.79 +2.94 | 25.48 +3.07 | 89.33 +5.28
ER/100 70.66 +2.83 | 23.61 +£2.98 | 90.21 4+ 3.38
DER++/30 68.94 +£4.02 | 24.11 +£4.23 | 89.76 + 3.97
ConSlide/30 76.21 £2.93 | 17.66 £+ 3.13 | 90.01 + 3.24
QPMIL-VL 79.92 +3.54 | 13.24 + 3.28 | 90.80 + 2.95
LoRA finetune | 45.89 +4.22 | 38.52 +3.80 | 87.07 + 3.21
InfLoRA 80.31 £4.14 | 13.59 + 3.64 | 88.46 + 3.72
CoMEL (Ours) | 83.27 +3.63 |11.51 + 3.78 | 91.42 + 3.17

Table S15. Additional comparison of methods for slide-level clas-
sification on the TCGA dataset with reversed task order. The best
and second-best results are marked as bold and underline. Each
experiment consisted of 10 runs.

lines in the continual instance classification, but with the
sequence reversed. That is, the sequence of organ for con-

tinual tasks is: ESCA, RCC, BRCA, and NSCLC. Tab. S15
illustrates the performance of CL baselines and CoMEL for
continual bag classification on the TCGA datasets with re-
verse sequence. Just like in the initial experiment, COMEL
achieved the highest performance in terms of ACCy,, and
Forgetyag, demonstrating its strong performance while ef-
fectively preserving previously learned knowledge. Consis-
tently, CoMEL also achieved the highest masked bag-level
accuracy (M.ACCy,s) compared to the baselines. Rehearsal-
based approaches such as ER and ConSlide demonstrated
their effectiveness in mitigating catastrophic forgetting
for continual bag classification, while regularization-based
methods suffered from severe forgetting.

S3.3. Results on Single Dataset

We further evaluated our method’s bag and instance classifi-
cation ability on the single dataset CM-16. From Tab. S14,
we can see that GDAT achieved the best performance on
bag classification compared to the baselines, demonstrating
its effectiveness. Furthermore, the removal of BPPL from
GDAT results in a notable performance drop in instance



classification for localization. This indicates that BPPL is
an important component for effective instance localization.

S3.4. Additional Metrics with Various Backbones

Tab. S16 presents the results of additional metrics that were
omitted from Tab. 4. It demonstrates that COMEL performs
well across various backbones for the missing metrics.

Model ResNet50 PLIP CONCH UNI

IoU (1) |36.19+2.24|39.34 +1.87[37.16 +£2.31 | 42.78 £ 1.93
ACChyg (1) 55.29 £ 1.47|59.22 4 2.04 | 54.20 £ 1.49| 61.59 £ 2.11
AUCh;,g (1) 88.86 +1.2189.38 & 1.03 | 88.27 £ 1.86 | 90.22 £ 1.74

Table S16. Additional metrics with different feature extractors on
continual instance classification.

S4. Additional Qualitative Results

We provide additional qualitative results for instance classi-
fication under continual MIL setup. From Fig. S2 to Fig. S5,
we can see that COMEL can preserve the localized tumor
region after training on all five organ datasets.

S5. Limitations

In this work, we considered only a fixed sequence of dis-
joint tasks for the continual MIL setup. For example, the
MIL models learn from datasets of distinct organs or sub-
types for WSI analysis in our experiments. However, in
real-world hospital settings, WSIs collected over a certain
period include a mixture of various organs and tumor sub-
types. In continual learning, such configuration has already
been studied under the concept of blurry tasks [S11], where
task boundaries are ambiguous. In this work, we did not
consider such blurry tasks, leaving it as an interesting fu-
ture work. Bag Prototypes-based Pseudo-Labeling (BPPL)
module heavily relies on the accuracy of attention scores
as pseudo-labels. Our ablation studies on BPPL hyperpa-
rameters in Tab. S7 and Tab. S8 indicate that localization
performance is highly sensitive to hyperparameter selec-
tion which influences pseudo-label quality. The Orthogo-
nal Weighted Low-Rank Adaptation (OWLoRA) effectively
mitigated catastrophic forgetting in previous tasks. How-
ever, the basis of new tasks cannot be introduced indefi-
nitely, as the maximum rank of a matrix is upper-bounded
by its dimension. Therefore, OWLoRA has inherent limita-
tions in learning an infinite sequence of sequential tasks.
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Figure S2. Additional qualitative results of localization across sequential organ datasets under the continual MIL setup. Each column is
the localization performance on Task 1 as the learned organ changes over sequential tasks. Each row corresponds to CL methods including
CoMEL. CoMEL successfully preserved the localization quality across all tasks, while baselines increase false positives or false negatives.
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Figure S3. Additional qualitative results of localization across sequential organ datasets under the continual MIL setup. Each column is
the localization performance on Task 1 as the learned organ changes over sequential tasks. Each row corresponds to CL methods including
CoMEL. CoMEL successfully preserved the localization quality across all tasks, while baselines increase false positives or false negatives.
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Figure S4. Additional qualitative results of localization across sequential organ datasets under the continual MIL setup. Each column is
the localization performance on Task 2 as the learned organ changes over sequential tasks. Each row corresponds to CL methods including
CoMEL. CoMEL successfully preserved the localization quality across all tasks, while baselines increase false positives or false negatives.
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Figure S5. Additional qualitative results of localization across sequential organ datasets under the continual MIL setup. Each column is
the localization performance on Task 2 as the learned organ changes over sequential tasks. Each row corresponds to CL methods including
CoMEL. CoMEL successfully preserved the localization quality across all tasks, while baselines increase false positives or false negatives.
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