DMQ: Dissecting Outliers of Diffusion Models for Post-Training Quantization

Supplementary Material

1. Implementation details

This section provides a more detailed description of
the experimental implementation presented in the main
manuscript. Tab. | summarizes the hyperparameters used
across all experiments for W4AS8. The number of sampling
steps for generating calibration data is denoted by 7", while
n represents the amount of calibration data sampled per
step. For training, we set the batch size to B and use itera-
tion to denote the number of training steps required to learn
the LES factors 7. The adaptive timestep weighting loss is
controlled by «, where a higher value prioritizes optimiza-
tion on early denoising steps. x determines the agreement
threshold for selecting PTS factors, ensuring stability in the
voting mechanism. The momentum parameter £ smooths
the moving average update of accumulated loss values, pre-
venting abrupt changes in timestep weights. D represents
the range of candidate PTS factors, allowing for optimal
scaling adjustments across channels. Specifically, the cali-
bration dataset for the unconditional generation consists of
256 randomly generated samples, sampled using a 20-step
DDIM sampler. By including all samples from the inter-
mediate steps, the total number of calibration data points
is 5120. For a class-conditional generation, we further uti-
lize calibration data with classifier-free guidance [5] (cfg),
where a guidance scale is set to 3.0. For text-guided gen-
eration, the data is sampled using a 25-step DDIM sampler,
resulting in a total of 6400 calibration data points. These
hyperparameters are carefully tuned for different datasets
and model architectures to achieve robust and stable quan-
tization performance.

2. Experiment setup details

We build upon official PyTorch implementation' of LDM
and used provided pre-trained models. For a fair compar-
ison, all methods quantize each layer except the input and
output layers, which remain in full precision per common
practice. Specifically, the original implementaion of PTQD
[4] and TFMQ-DM [6] do not quantize skip-connection,
downsample, and upsample layers. Thus, we modify their
code to quantize those layers for fair comparison. Then we
directly run original code provided by the baselines.

To control for metric fluctuations caused by differences
in generated samples, we unified all baselines into a single
codebase and ensured identical samples were generated us-
ing the same random seed. Evaluation was conducted using
the implementation of guided-diffusion’.

lh:tps ://github.com/CompVis/stable-diffusion
Zht tps://github.com/openai/guided-diffusion

3. Quantization granularity

In this section, we provide a detailed explanation of quanti-
zation granularity. This expands on the concepts introduced
in the Preliminary section of the main paper, providing addi-
tional details. If you are already familiar with quantization,
you may skip this section. The basic quantization and de-
quantization functions follow Eq. 3 in the main paper. Note
that modern libraries implement convolutions using algo-
rithms such as img2col [1] or implicit GEMM [2], making
them functionally equivalent to linear layers. Therefore, we
describe our approach in the context of linear layers. To
recap, the linear layer defined in the main text is given by:

Y = XW ~ (s¥X)(sWW) (1)

where X € RE*Cin ig the activation, W € RCinxCout ig
the weight, and Y € RZ*Cout is the output. s(X) and s(W)
denote the scales for X and W, respectively.

To investigate which quantization granularity is ap-
propriate, we first examine per-element quantization—the
finest granularity—where each element of a weight or ac-
tivation has its own scale. Matrix multiplication with per-
element quantization can be expressed as:

p
Yi; ~ (Z(Sz('kX)Xik) : (S](c‘;V)ij)> : 2
k=1
However, since the scales are floating-point values, includ-
ing them inside the summation results in floating-point ma-
trix multiplication, defeating the purpose of quantization.
To enable efficient integer matrix multiplication, it is nec-
essary to factor out the scale s from the summation. This
requires the scales to be independent of k [14]. Specifically,
activation scale s(X) must be constant across columns (.e.,
one scale per row), and weight scale s(") must be constant
across rows (i.e., one scale per column). Under this condi-
tion, the matrix multiplication can be formulated as:

Cin
Y;; ~ SEX)S§W) <Z Xik -ij> . 3)
k=1

This formulation shows that integer matrix multiplication
is feasible when activations are quantized with per-tensor
or per-sample (row) granularity and weights are quantized
in per-tensor or per-channel (column) granularity. Since
per-sample quantization requires online computation, per-
tensor quantization is generally used for activations. In this
paper, we use per-tensor activation quantization, meaning
that s(X) is a scalar value. However, for consistency with
the general formulation, we retain the index ¢ rather than
removing it.

https://github.com/CompVis/stable-diffusion
https://github.com/openai/guided-diffusion

cfg

Experiment T n

LDM-8 LSUN-Church (uncond.) 20 256
LDM-4 LSUN-Bedroom (uncond.) 20 256
LDM-4 FFHQ (uncond.) 20 256
LDM-4 ImageNet (class cond.) 20 256
Stable Diffusion (text cond.) 25 256

v
X

N « K & D B iteration
5120 25 085 095 3 32 4000
5120 20 085 095 3 32 6000
5120 20 085 095 3 32 6000
10240 20 085 095 3 32 6000
6400 20 085 095 3 8 6000

Table 1. Hyperparameters for all experiments. 7'/ c is the number of sampling steps for generating the calibration data. n is the amount of
calibration data per sampling step, and N is the size of calibration dataset. cfg indicates whether classifier-free guidance was used or not.
B is the batch size. iteration is the number of training steps used to learn 7.

4. Details of quantization approach

In this section, we provide a detailed explanation of the
quantization process, combined with proposed Learned
Equivalent Scaling (LES) and Power-of-Two Scaling (PTS).
Note that LES are applied to all layers and LES combined
with PTS are only applied to skip connection layers. Before
introducing each method, we first recap the basic quantiza-
tion process.

Basic quantization. The standard quantization and dequan-
tization functions for activations and weights are defined as
follows:

~ X ~
_ ~ X
X—Clamp<\‘s(7x)-‘,l,u),X~s -:)(7
W W W ~ sW) . W
= Clamp (\‘S(T)—‘ ,l, U) B ~ S . W7 (5)

where [-] denotes round-to-nearest-integer operator.
clamp(-) truncates values to [l,u], yielding a low-bit
representation X of X. Here, the range [, u] is determined
by the bit-width of the quantization. When s is a vector,
X /s implies channel-wise division.

Quantization with LES. To recap Eq. 5 from the main
paper, matrix multiplication with Equivalent Scaling can be
expressed as:

@

Y = (X/7) (T 0 W) = XW, (6)

where / and © denote channel-wise division and multipli-
cation, respectively. We apply quantization and dequantiza-

tion to the scaled activation X and weight W, formulated

as:
X = clamp <{X-‘ A u> ,X ~ s f(, (@)
s(X)
-~ _ ‘/AV ~ ~ (W) -~
W—Clamp<{w—‘,l,u>,wws -W. (8)

However, this formulation presents a key challenge. Since
the weight W remains fixed, 77 ® W can be precom-
puted and stored for direct use. In contrast, activation X
change dynamically, making it impractical to precompute
and store their scaled values. As a result, directly applying

this method would require dividing by 7 at every inference
step just before quantization, introducing additional compu-
tational overhead. To resolve this, we leverage the follow-
ing transformation, which allows 7 to be seamlessly fused
into the scale factor:

~

X X/ X .
S50 T 50 T 705X ©)

This eliminates the need to divide activations by 7 at every
step, effectively reducing the computational overhead. This
optimization is feasible because we use static quantization,
where the activation scale remains constant. In contrast,
dynamic quantization, which updates the activation scale at
each step, does not allow fusing 7 into the scale. The quan-
tization functions incorporating this method are formulated
as follows:

X:clamp ({ﬁ—‘ ,l,u) (10)

5 {r'ow}
W—clamp({w NETH

where {-} indicates pre-computed values that are stored in
memory. The matrix multiplication with dequantization re-
mains the same as in Eq. (3). This approach allows us to
eliminate additional overhead while efficiently integrating
LES into the quantization process.

Quantization with LES and PTS. For skip connection lay-
ers in residual block, where extreme outliers are observed,
PTS is applied alongside LES. The quantization and de-
quantization functions incorporating both LES and PTS are
formulated as follows:

- X .
X:c]amp(\‘m—‘ ,l,u) 7X~

Y

(2° 0 s%). X
(12)

{rT oW}

) 1,z,u>,Vst(W>~W (13)

W= clamp <{

Additionally, the matrix multiplication with dequantization
can be expressed as:

Cin
Y~ (Z(z‘*ksﬁ’gxm : (s§-W)ij)))

k=1

GEMM [M,K] x [K,N]. PTX: mma.sync.aligned.m16n8k32.row.col.s32.s8.58.s32

20.0| —e— Ours W4A8 with bitshift »
-=- Pytorch FP32 /

WARP_K_TILES = 1

le4 Forward Latency (s)
5
b

256 512 1024 1536 2048 3072 4096

Figure 1. Comparison on latency between pytorch fp32 GEMM
and our custom W4A8 GEMM kernel including quantization, bit-
shifting on weight, GEMM, and dequantization.

Since the PTS factor 2% is indexed by k, it cannot be fac-
tored out of the summation. Moreover, modern GPU archi-
tectures do not natively support multiply-bitshift-add oper-
ations, making direct computation of the above formulation
inefficient. To address this, we apply bit-shifting to weights
immediately after loading them during kernel execution, en-
suring efficient computation:

Wz?iftcd _ 25kwkj = ij < O, (15)

where < denotes the left-bit-shift operation. Dequantiza-
tion functions incorporating Eq. (15) are formulated as:

Cin
Y~ s s W) <Z X, - Wit ted) . (16)
k=1

As a result, PTS effectively handles extreme outliers with
minimal computational overhead, requiring only a bit-
shifting operation on weight.

5. Speedup of Power-of-Two Scaling

To evaluate the speedup effect of Power-of-Two Scaling
in quantization, we implemented a custom CUDA kernel
that integrates quantization, bit-shifting on weights, GEMM
(General Matrix Multiplication), and dequantization. The
comparison of latency between our custom W4A8 GEMM
kernel and PyTorch FP32 GEMM is shown in Fig. I.
Our method achieves up to 5.17x speedup over FP32 at
M=3072, demonstrating the efficiency of our approach. Al-
though bit-shifting introduces minor additional overhead,
these results confirm that it can be handled highly efficiently
in practice. Additionally, since Power-of-Two Scaling is ap-
plied only to a small subset of the network (specifically, skip
connection layers with extreme outliers), its overall impact
on network latency remains minimal.

6. Limitation and future Work

In this paper, we consider robust quantization to allevi-
ate the inter-channel variance of the neural network, which
is often overlooked by the current quantization methods
for diffusion models. Consequently, we propose Learned
Equivalent Scaling and channel-wise Power-of-Two Scal-
ing, the optimization processes that consider the inter-
channel variance and the iterative nature of the generative
process in diffusion models.

As our approach follows the common configuration used
in previous research and does not contain specific assump-
tions for the calibration dataset or intermediate distribu-
tion of diffusion trajectory, some settings for quantization
can be further optimized to improve the upper bound of
the proposed method. For instance, we have adopted uni-
form timestep sampling for calibration data, following Q-
Diffusion [7]. However, one can freely adopt other data
composition strategies such as sampling from normally dis-
tributed timesteps [11] or aligning more closely with origi-
nal training samples [8]. Furthermore, various quantization
techniques, including noise correction [4, 15] and introduc-
ing timestep-specific quantization parameters [6, 12], can
be orthogonally adapted to our method.

Nevertheless, various quantization methods for diffusion
models, including ours, only consider reconstructing the
output of diffusion models exactly with low-bit precision.
Moving towards robustness and efficiency in more extreme
low-bit quantization, such as 2- or 3-bit representation, an-
alyzing the feature map of diffusion models and prioritizing
the salient feature could prove more effective, such as uti-
lizing mixed-precision weight [13]. In addition, extending
the our approach to include various downstream tasks that
require efficient fine-tuning, such as personalized text-to-
image diffusion models [10, 16], holds significant potential
for the practical application of our method.

7. Societal impact

While our research primarily focuses on the quantization of
diffusion models to achieve efficient generation, it is impor-
tant to acknowledge the broader societal impact of genera-
tive models. By enabling more efficient generation, our ap-
proach could make generative models more accessible to a
wider range of users, increasing the potential for both posi-
tive and negative applications such as generating deepfakes,
NSFW content, or copyright-infringing materials. Integrat-
ing safeguards like erasing NSFW content from diffusion
models [3] into the quantization process should be consid-
ered to mitigate potential risks.

8. More Visual Results

Figs. 2 to 5 shows samples generated with W4A6 quantized
models using state-of-the art methods on various datasets.

The results demonstrate that the proposed quantization
method effectively generates high-quality images while
maintaining the structure of samples from full-precision
models.

References

(1]

(2]

(3]

[4]

(53]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

Kumar Chellapilla, Sidd Puri, and Patrice Simard. High per-
formance convolutional neural networks for document pro-
cessing. In Tenth international workshop on frontiers in
handwriting recognition. Suvisoft, 2006. 1

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,
Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan
Shelhamer. cudnn: Efficient primitives for deep learning.
arXiv preprint arXiv:1410.0759, 2014. 1

Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-
Kaufman, and David Bau. Erasing concepts from diffusion
models. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 2426-2436, 2023. 3
Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and
Bohan Zhuang. Ptqd: Accurate post-training quantization
for diffusion models. Advances in Neural Information Pro-
cessing Systems, 36,2024. 1,3

Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 1

Yushi Huang, Ruihao Gong, Jing Liu, Tianlong Chen, and
Xianglong Liu. Tfmq-dm: Temporal feature maintenance
quantization for diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7362-7371,2024. 1, 3,5, 6

Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen
Dong, Daniel Kang, Shanghang Zhang, and Kurt Keutzer.
Q-diffusion: Quantizing diffusion models. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 17535-17545, 2023. 3,5, 6

Xuewen Liu, Zhikai Li, Junrui Xiao, and Qingyi Gu. En-
hanced distribution alignment for post-training quantization
of diffusion models. arXiv preprint arXiv:2401.04585,2024.
J

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684-10695, 2022. 5, 6

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 22500-
22510, 2023. 3

Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and
Yan Yan. Post-training quantization on diffusion models. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 1972-1981, 2023. 3
Junhyuk So, Jungwon Lee, Dachyun Ahn, Hyungjun Kim,
and Eunhyeok Park. Temporal dynamic quantization for dif-
fusion models. Advances in Neural Information Processing
Systems, 36, 2024. 3

[13]

(14]

(15]

[16]

Yang Sui, Yanyu Li, Anil Kag, Yerlan Idelbayeyv, Junli Cao,
Ju Hu, Dhritiman Sagar, Bo Yuan, Sergey Tulyakov, and Jian
Ren. Bitsfusion: 1.99 bits weight quantization of diffusion
model. arXiv preprint arXiv:2406.04333,2024. 3

Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and
Paulius Micikevicius. Integer quantization for deep learn-
ing inference: Principles and empirical evaluation. arXiv
preprint arXiv:2004.09602, 2020. 1

Yuzhe Yao, Feng Tian, Jun Chen, Haonan Lin, Guang
Dai, Yong Liu, and Jingdong Wang. Timestep-aware cor-
rection for quantized diffusion models. arXiv preprint
arXiv:2407.03917,2024. 3

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models, 2023.
3

TFMQ-DM Q-Diffusion Full-precision

Ours

Figure 2. Visualization of samples on LSUN-Bedrooms 256 X256 generated by full precision LDM [9] and W4A6 quantized models using
Q-Diffusion [7], TFMQ-DM [6], and ours.

Full-precision

Q-Diffusion

TFMQ-DM

Ours

Figure 3. Visualization of samples on LSUN-Chruches 256 X256 generated by full precision LDM [9] and W4A6 quantized models using
Q-Diffusion [7], TFMQ-DM [6], and ours.

TFMQ-DM Q-Diffusion Full-precision

Ours

Figure 4. Visualization of samples on FFHQ 256x256 generated by full precision LDM [9] and W4A6 quantized models using Q-
Diffusion [7], TFMQ-DM [6], and ours.

TFMQ-DM Q-Diffusion Full-precision

Ours

Figure 5. Visualization of samples on ImageNet 256256 generated by full precision LDM [9] and W4A6 quantized models using Q-
Diffusion [7], TFMQ-DM [6], and ours.

	Implementation details
	Experiment setup details
	Quantization granularity
	Details of quantization approach
	Speedup of Power-of-Two Scaling
	Limitation and future Work
	Societal impact
	More Visual Results

