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for Video Class-Incremental Learning

Supplementary Material

In this supplementary material, we provide architec-
ture/implementation/metrics/dataset details, and additional
experimental results to complement the main paper. We or-
ganize the supplementary material as follows:
1. Architecture Details
2. Complete implementation details
3. Evaluation metric details
4. Additional experimental results
5. Dataset details

1. Architecture Details
In this section, we provide architecture details of
ESSENTIAL. We employ CLIP [13] as our frame-level vi-
sual encoder. We use L = 8 of clip length and both MR
module and semantic prompt is task-specific by default.

1.1. Details of memory retrieval.
In Table 1, we provide stage-wise details of memory re-
trieval module in ESSENTIAL during the training stage.
We omit the task index k for simplicity. Given an input
video clip X with a length of 8, we first pass it through
the frozen visual encoder, resulting in frame-level features
Sdense ∈RL×d . Note that we omit the notation ’frame-level’
for simplicity. In this case, we set the number of frame fea-
tures to l = 2. Subsequently, to obtain temporally sparse
features Ssparse, we temporally sub-sample the Sdense using
randomly selected frame indices. Then, we take semantic
prompt, P, and pass both the semantic prompt P and the
temporally sparse frame-level features Ssparse through the
MR module. The multi-head cross-attention (MHCA) layer
enables the effectively integration of between P and Ssparse.
Afterward, we pass the output tensors from the MHCA layer
through the feed-forward network (FFN), resulting the re-
trieved dense features S̃dense. Please refer to the Section 3.2
of the main paper for the remaining training process.

1.2. Temporal encoder architecture.
As shown in Figure 3 of the main paper, we employ a tem-
poral encoder, denoted as ft(·;θt), to obtain a clip-level fea-
ture vector. The temporal encoder consists of one or more
Transformer layers, including attention layers and feed-
forward network (FFN). Among the two design choices for
the attention layer: i) self-attention and ii) cross-attention,
we adopt cross-attention. In the self-attention architecture,
we concatenate Ssparse and semantic prompt P and pass
it through self-attention layers. In the cross-attention ar-
chitecture, we first initialize a learnable feature vector as
a query and pass it through cross-attention layers, using

Table 1. Stage-wise details of the Memory retrieval. We pro-
vide a detailed description of each operation performed from an
input clip to frame-level reconstruction. The input for this exam-
ple is one video clip consisting of 8 frames (skip batch term). In
the description, D and T represent the embedding dimension and
temporal sequence length, respectively. We omit the Layer Nor-
malization and activation functions for simplicity.

Memory Retrieval Module

Stage Remark Output Tensor Shape

Feed-Forward Linear Down
S̃dense : 8×768

Network with ratio = 0.25

Feed-Forward Linear Up & GELU
P : 8×3072

Network with ratio = 4.0

Cross-Attention
MHCA(P,Ssparse) P : 8×768
window shape: time

Input of MR module
Taking P P : 8×768

from semantic memory Ssparse : 2×768

Temporal Random selection
Ssparse : 2×768

sub-sampling from Sdense

Extracting
Frozen fs(·) Sdense : 8×768

frame-level features

Input video clip - X : 8×224×224×3

Ssparse as a key and value. In Table 6, we show the ex-
perimental results analyzing the effect of different temporal
encoder architectures. In the temporal encoder with cross-
attention, we initialize a learnable query token and perform
the attention operation, where key and value come from in-
put frame-level features. The temporal encoder enhances
the temporal understanding of frame-level features obtained
from the frozen visual encoder, addressing their limitations
in capturing temporal context.

1.3. Architecture details of the baselines in the MR
architecture ablation study.

In Figure 1, we visualize the architectures of the baselines
used in the MR module architectures ablation study, as pre-
sented in Table 3 (b) of the main paper. In Figure 1 (a),
we present the MLP w/o semantic memory baseline, which
includes three fully-connected layer with GELU activation
without semantic memory. For the fully-connected layer,
we flatten Ssparse, resulting in Rl·d . After passing the Ssparse

through MLP, we reshape the output tensors, S̃dense ∈ RL·d

to RL×d . In Figure 1 (b), we present the architectures of
Add and Multiply baselines, which serves as naive baselines



to integrate semantic prompt, P and temporally sparse fea-
tures, Ssparse. To match a clip length between P and Ssparse,
we conduct nearest neighbor interpolation Ssparse along the
temporal axis. In Figure 1 (c), we show the Self-attention
baseline, which replaces the cross-attention layer of MR
module with self-attention layer. We append the Ssparse
to the P and pass them through a self-attention layer and
a feed-forward network. Afterward, we detach the Ssparse

from the output tensors to obtain the S̃dense.

2. Implementation details
2.1. Training.
We use CLIP ViT-B/16 [13] as the visual encoder and keep
it frozen. The temporal encoder consists of a 3-layer cross-
attention architecture, while the memory retrieval module
utilizes a 1-layer cross-attention architecture. For SSV2 [6],
we attach and learn a lightweight adapter [19] during the
base task learning stage and then freeze it in the subsequent
incremental learning stages. We conduct our experiments
with a batch size of 24 for all datasets except UCF-101 [15],
where the batch size is set to 10. The learning rate is set
to 0.001, following a cosine scheduling strategy. For the
current task training stage, we train for 50 epochs for all
datasets except UCF-101, where we train for 30 epochs.
During the rehearsal stage, we train for 30 epochs across
all datasets. We conduct the experiments with 24 NVIDA
GeForce RTX 3090 GPUs for all datasets except UCF-101
and ActivityNet [2], where we use 8 GPUs. We imple-
ment ESSENTIAL using PyTorch and build upon the code
of VideoMAE [16]. We follow the prior works [5, 20] in
adopting the local cross-entropy loss, where we only com-
pute the loss between current task logits and ground truth
labels and apply logit masking for the classes belong to the
other tasks. We set both the α and β to 1.0 for all experi-
ments.

2.2. Memory update.
After each training stage, given an input clip length of L,
we store Ns per class feature vectors with a clip length of
l (l ≪ L) in the episodic memory and a semantic prompt
with a clip length of L in the semantic memory as shown in
Figure 2. In Tables 1-3 of the main paper, we use the opti-
mal combination of (Ns × l) for each dataset on two bench-
marks [11, 18]. In the TCD benchmark, we select (Ns × l)
combinations as follows: UCF-101 (10 × 1), HMDB51
(10 × 1) and SSV2 (4 × 4). In the vCLIMB benchmark,
we select (Ns × l) combinations as follows: ActivityNet
(32× 2), Kinetics-400 (32× 2) and UCF-101 (16× 2). In
Table 3, we show the experimental results exploring how to
determine the optimal (Ns × l) configuration.

3. Evaluation Metric.
Performance We evaluate the performance using two
metrics: Average Accuracy (AA) and Average Incremen-
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Figure 1. Architecture visualization of the different memory
retrieval methods. We visualize the various MR architectures
presented in Table 3 (b) of the main paper.
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Figure 2. Memory Update. After training k-th task, we update
episodic memory and semantic memory. For episodic memory, we
select Ns samples per class and subsample l frame-level features
from each sample among the training samples of the current task.
For semantic memory, we store the semantic prompt learned from
the current task.

tal Accuracy (AIA). AA on k-th task, AAk is the average
classification accuracy of the model evaluated up to the k-
th task. Following vCLIMB [18], we evaluate UCF-101,
ActivityNet, and Kinetics-400 using the final average ac-
curacy, AAK , where K denotes the total number of tasks.
Following TCD [11], we evaluate UCF-101 and SSV2 us-
ing the Average Incremental Accuracy (AIA), defined as
AIA = 1

K ∑
K
k=1 AAk, where K denotes the total number of

tasks.

Memory usage. For details on the memory usage of
ESSENTIAL, please refer to Section 4.2 of the main paper.
We compute the memory usage for storing RGB frames us-
ing the formula Ns×L×224×224×3 where Ns is the num-
ber of samples per class and L is the temporal length. We
assume that a single frame has a resolution of 224×224 pix-



els with 3 color channels. For centroid feature vectors [12],
we calculate the memory usage as Nc ×dc ×4, where Nc is
the number of centroids, and dc is the centroid dimension.
For the STSP [3], raw examples or features are not stored
in episodic memory. Instead, it stores a covariance matrix.
Thus, we assume that the input consists of frames with a res-
olution of 224× 224 pixels and then compute the memory
usage of the covariance matrix accordingly. Since there is
no publicly available code of ST-Prompt [12] and STSP [3],
we calculate the memory usage based on the configuration
described in the paper. 1

Table 2. Memory usage of VCIL methods, including additional
overhead from MR modules in ESSENTIAL.

Method Params Mem. MR module Acc.

ST-Prompts 151M 80.5MiB - 85.1
PIVOT (RAW frame) 161M 26.4GiB - 93.4
PIVOT (JPEG compressed) 161M 7.5GiB - 93.4

ESSENTIALtask 162M 9.7MiB 270MiB 95.8
ESSENTIALglobal 99M 9.7MiB 27MiB 94.8

Memory consumption by MR module. Since we con-
sider only raw RGB frames and feature vectors extracted
from video samples when calculating memory usage, we
also report the additional memory overhead introduced by
MR module for completeness. Each MR module contains
approximately 7M parameters, occupying around 27 MiB
in FP32 precision. In the ESSENTIALtask configuration,
where a separate MR module is maintained per task, this
results in a total of ∼27× #Tasks MiB memory consump-
tion.

As shown in the Table 2, we report the memory usage
of each method (Mem) along with the additional memory
required by our MR modules (MR) in vCLIMB UCF-101,
10 tasks setting. For a fair comparison, we also include
the result that estimates PIVOT’s memory usage assum-
ing it stores raw video frames in JPEG-compressed for-
mat. ESSENTIAL is more memory-efficient than stor-
ing raw RGB data—with JPEG-compression— (7.5GiB vs.
279.7MiB).

For scenarios where the MR module memory may be a
concern, we also provide results of a variant using a sin-
gle global MR module across tasks (ESSENTIALglobal).
As shown in Table below and in Table 3 (a) of the main
paper, ESSENTIALglobal achieves favorable performance
(94.8%) with significantly lower memory usage (27MiB).
Optimizer state occupies ∼54MiB during the incremental
training stage. However, since we freeze the MR module
during the rehearsal stage, it does not incur any optimizer
memory overhead.

1ST-Prompt reports the size of the prompts but not the size of the cen-
troids. Additionally, they do not take data types into account.
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Figure 3. T-SNE [17] visualization of memory retrieval of the
MR module on third task in SSV2 (10×9) tasks.

4. Additional experimental results.
4.1. Additional analysis.

Figure 4. GPU memory usage of ESSENTIAL as the number
of tasks increases during training on the SSV2 dataset. We
plot the GPU memory usage required for training as the number
of tasks increases up to 500 on a single RTX 3090 GPU. The GPU
memory capacity of the RTX 3090 is represented by a red dashed
line. Notably, ESSENTIAL utilizes only approximately 63% of
the available GPU memory even when the number of tasks reaches
500, showcasing its remarkable memory efficiency.

Visualization of memory retrieval. We provide a T-SNE
visualization for Task 3 of SSV2 (10×9) in Figure 3. Addi-
tionally, for a fair comparison, we use the validation set for
this analysis. We compare the L2 distances from the origi-
nal temporally dense feature vectors (Sdense) to (i) the tem-
porally sparse feature vectors (Ssparse) and (ii) the retrieved
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Figure 5. T-SNE of semantic prompts and task feature vectors in SSV2 (10× 9) tasks. We present the T-SNE [17] visualization of
semantic prompt and task feature vectors to observe what the semantic prompt learns. (a) The semantic prompt before training Pbefore
(triangle) is far from the current data feature vectors (Sdense,Ssparse, and S̃dense ). After training, we observe that the semantic prompt Pafter
(triangle) is located at the center of the current data feature vectors (triangle → triangle). (b) Similar to (a), in the ninth task, the semantic
prompt also moves toward the center of the task feature vectors after training. This indicates that the semantic prompt captures general
knowledge of the current task.

feature vectors (S̃dense). As shown in Figure 3, the distance
between Sdense and S̃dense is significantly smaller than the
distance between Sdense and Ssparse (19.8 vs. 8.7). This result
demonstrates that the MR module effectively retrieves tem-
porally dense feature vectors from temporally sparse feature
vectors.

GPU memory usage of MR module. The MR module
consists of cross attention and MLP components. Each MR
module occupies approximately 27MiB of GPU memory
when using float32 precision. Notably, we train the k-th
MR module during the k-th task training stage and then
freeze it for subsequent use. We plot the GPU memory
usage of ESSENTIAL as the number of task increases as
shown in Figure 4. The memory usage remains approxi-
mately 15GB even when the number of task reaches 500,
which is a reasonably high number in continual learning.
This demonstrates the memory-efficiency of ESSENTIAL,
even in scenarios with a large number of total tasks. Addi-
tionally, if GPU memory is somehow very limited, we can
use a global MR module as a memory-efficient alternative
while still achieving comparable performance, as shown in
Table 4 (a) of the main paper.

Visualization of semantic prompt. We present the T-
SNE [17] visualization of semantic prompt and task fea-
ture vectors to observe what the semantic prompt learns.
As shown in Figure 5, the semantic prompt before training
Pbefore (triangle) before training is far from the current task
feature vectors (Sdense, Ssparse, and S̃dense ). After training,
we observe that the semantic prompt (triangle) is located at
the center of the current task feature vectors. This indicates

that the semantic prompt captures general knowledge of the
current task.

What is the optimal (Ns × l) configuration for episodic
memory? In Table 3, we investigate the optimal config-
uration of (Ns × l) for episodic memory, where Ns and l
denote the number of samples stored per class and the num-
ber of frame features. Since the UCF-101 is a static-biased
dataset [4, 10], reducing the number of frames and storing
more samples yields the highest performance. On the other
hand, we observe that for the SSV2 dataset, ESSENTIAL
achieves the highest performance when Ns = 4 and l = 4.
The result indicates that ESSENTIAL needs to store more
frames than the UCF-101 setting to capture the essential
temporal dynamics since the SSV2 is a temporal-biased
dataset [1, 8].

Comparison with rehearsal-free method. We compare
ESSENTIAL with rehearsal-free baselines in terms of
accuracy and final backward forgetting (BWF) on the
vCLIMB UCF-101 dataset with 20 tasks. As shown in
Table 4, ESSENTIAL significantly outperforms CODA-
Prompt [14], a rehearsal-free method, achieving both higher
accuracy (95.9% vs. 74.2%) and lower forgetting (BWF 2.3
vs. 13.3). This indicates that ESSENTIAL effectively miti-
gates forgetting even without relying on rehearsal buffers.
To further illustrate this, we plot full task-wise accuracy
curves—i.e., the diagonal and last row of the full accu-
racy matrix—in Figure 6, showing that ESSENTIAL re-
tains substantially higher accuracy as the number of tasks
increases.



Table 3. Performance comparison with different memory configurations on UCF-101 and SSV2 datasets of TCD benchmark. We
report the Top-1 average incremental accuracy (%) and the total memory usage (MB) for different (Ns × l) configurations. Here, Ns and l
denote the number of samples stored per class and the number of frame features. The best results are highlighted.

Backbone (Ns × l)

UCF-101

10 × 5 Tasks 5 × 10 Tasks 2 × 25 Tasks

Memory
Usage Acc. Memory

Usage Acc. Memory
Usage Acc.

ImageNet
pre-trained
ViT-B/16

(10×1)
3.1M

92.8
3.2M

90.8
3.6M

90.1
(5×2) 92.1 90.2 89.1
(2×5) 90.8 88.2 84.1

CLIP
pre-trained
ViT-B/16

(10×1)
3.1M

95.1
3.2M

93.9
3.6M

93.3
(5×2) 95.3 93.2 92.5
(2×5) 93.0 91.9 89.9

Backbone (Ns × l)

SSV2

10 × 9 Tasks 5 × 18 Tasks

Memory
Usage Acc. Memory

Usage Acc.

ImageNet
pre-trained
ViT-B/16

(8×2)
8.4M

42.3
8.6M

40.8
(4×4) 44.9 42.7
(2×8) 40.2 38.5

CLIP
pre-trained
ViT-B/16

(8×2)
8.4M

47.1
8.6M

45.8
(4×4) 48.9 47.5
(2×8) 45.5 44.6

2.3

13.3

Figure 6. Task-wise accuracy curves on vCLIMB UCF-101, 20 tasks setting.

Table 4. ESSENTIAL outperforms rehearsal-free methods in
both accuracy and BWF on vCLIMB UCF-101 (20 tasks).

Method Rehearsal? Acc. ↑ BWF ↓
CODA-Prompt [46] × 74.2 13.3

PIVOT [55] ✓ 93.1 3.9
ESSENTIAL ✓ 95.9 2.3

4.2. Additional ablation study

To further validate the effect of each component, we present
ablation results on the Something-Something-V2 (10 × 9
tasks) dataset. We report the Top-1 average incremental ac-
curacy (%). We use CLIP [13] as a backbone encoder and
set Ns = 4, and l = 4 for episodic memory.

Ablation study on the impact of α and β . ESSENTIAL
calculates the total loss (Ltotal) by applying a weighted sum
of the static matching loss (LSM) and temporal matching
loss (LTM) using (α) and β as described in Eq. (10) of the
main paper. We show the ablation results on (α) and β in
the Table 5. We achieve the highest performance when we
set the value of both hyperparameters to 1.

Table 5. Ablation study on the impact of α and β .

Loss Acc.
Static matching (α) Temporal matching (β )

0 0 46.3
1 0 46.9
0 1 47.1

0.5 1 47.5
1 0.5 48.1
1 1 48.9

Table 6. Ablation study on temporal encoder architecture.

Attention strategy Acc.

Self-attention 48.1
Cross-attention 48.9

Effect of temporal encoder architecture. In Table 6, us-
ing cross-attention in the temporal encoder, ft(·;θt), shows
favorable performance compared to using self-attention.

Effect of using MR module during inference stage. For
each task, we have a dedicated MR module and dedicated



Table 7. Effect of using MR module during inference stage.

MR module Sem. prompt Inference w/ MR module Acc.

Global Global × 47.4
Global Global ✓ 47.8
Task Task × 48.9

semantic prompt. Since we do not have task ID information
during inference in the class-incremental learning setting,
for each test sample, we have to estimate the task ID infor-
mation to select MR module and semantic prompt. Addi-
tionally, we provide experimental results by using a global
MR module and global semantic prompts so that we do not
need to estimate task ID information during testing. As
shown in Table 7, we observe that using the MR module
and semantic prompt during inference has little impact on
performance (47.4 vs. 47.8). Therefore, to improve com-
putation efficiency, we omit the MR module and semantic
prompt during testing.

5. Dataset Details
In this section, we provide a detailed description of the
datasets.

vCLIMB Benchmark The vCLIMB benchmark [18] in-
cludes UCF-101 [15], AcvitiyNet [2], and kinetics-400 [7].
The vCLIMB benchmark provides two experimental set-
tings: a 10 tasks and a 20 tasks configuration. In the 10
tasks setting, the entire set of action classes is partitioned
into 10 sequential tasks, whereas in the 20 tasks setting, the
classes are split into 20 sequential tasks.

TCD Benchmark The TCD benchmark [11] includes
UCF-101 [15], HMDB51 [9], and SSV2 [6]. The UCF-
101 in TCD consists of a base task learning 51 classes and
provides three settings: 10 classes × 5 tasks, 5 classes ×
10 tasks, and 2 classes × 25 tasks. The HMDB51 in TCD
consists of a base task learning 26 classes and provides two
settings: 5 classes × 5 tasks and 1 class × 25 tasks. The
SSV2 in TCD consists of a base task with 84 classes and
offers two settings: 10 classes × 9 tasks and 5 classes × 18
tasks.
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