
Emulating Self-attention with Convolution for Efficient Image Super-Resolution

Supplementary Material

The supplementary includes implementation details of
Flash Attention (FA) and proposed networks, additional
results on the arbitrary-scale super-resolution (SR) tasks,
quantitative results on real-world SR tasks, efficiency com-
parison beyond GPUs, and classic SR results on larger
model sizes.

6. Flash Attention Implementation Details

FA [10] implements self-attention by fusing kernels and
avoiding materializing a full score matrix (S = QK

T ),
thereby significantly reducing both memory footprint and
latency. Although FA has been widely adopted across var-
ious domains, such as classification and generation, its ap-
plication to SR tasks has been limited. In order to alleviate
the self-attention’s memory bottleneck, we attempted to in-
tegrate FA directly into SR architectures. However, we ob-
served that naively applying FA leads to highly unstable
training. We verified that this instability stems from FA’s
fused-kernel design, which blocks the use of relative posi-
tional bias (RelPos) [40, 49]. As shown in Table 6, train-
ing loss diverges when FA is employed without RelPos.
A common alternative is to use Rotary Positional Encod-
ing (RoPE) [23, 51], which rotates query and key tensors
for positional conditioning and therefore remains compat-
ible with fused kernels [65, 66]. Nonetheless, our experi-
ments demonstrate that even this approach fails to deliver
acceptable performance in the SR setting. To address these
challenges, we leverage Flex Attention [14], which sup-
ports both user-defined score modifications and FA. Our
implementation not only resolves the memory bottleneck
but also achieves superior performance by leveraging the
32⇥32 window size for self-attention.

Table 6. Comparisons on performance by FA implementation.

Type FA [10] FA w/ RoPE [23] FA w/ RelPos (Ours)

PSNR/SSRM (U100⇥2) NaN / NaN 32.76 / 0.9343 33.46 / 0.9395

7. Network Implementation Details

This section describes the details of the implementation of
our methods. We begin by outlining the basic model con-
figuration for each task, which includes the hyperparame-
ters C, N , and M . Here, C represents the number of chan-
nels, N denotes the number of ESCBlocks, and M indi-
cates the number of ConvAttns. Next, we describe addi-
tional components, such as the compositions of U and S,
among others. Finally, we present the training details, which

cover the training datasets, the number of training iterations,
the learning rate, optimizer configurations, the loss function
used, and the training batch and patch size.

7.1. Classic SR

Three variants are introduced in the classic SR task: ESC-
FP, ESC-light, and ESC. ESC-FP is a variant needed when
it is necessary to reduce FLOPs and parameter size, while
ESC-light and ESC are variants needed when it is neces-
sary to reduce latency. The basic configurations for each
variant are as follows: for ESC-FP, C, N , and M are 48,
5, and 5; for ESC-light, they are 64, 3, and 5; and for ESC,
they are 64, 5, and 5. All variants use Sub-Pixel Convo-
lution (SPConv) [50] as U . ESC-light and ESC utilize the
repeat function [16] as S and add F

s before the pixel shuf-
fle of SPConv, while ESC-FP employs bicubic interpolation
as S and adds F

s to the output of SPConv. Furthermore,
ESC-FP employs decomposed LK to further reduce FLOPs
and parameter size and utilizes extra layer normalizations
in front of the ConvFFNs. Lastly, hidden dimension (h)
for kernel estimators is set to 8 for ESC and ESC-FP,
while ESC-FP uses 4. For training, we use the DIV2K [1]
dataset, and for the data scaling experiments, we employ
the DIV2K+Flickr2K+LSDIR+Diverseg-IP (DFLIP) [34,
45, 54] dataset. Training our networks lasts for 500K iter-
ations, and the optimizer used is AdamW [41] with �s of
0.9 and 0.9 and a learning rate of 5e-4. We use L1 loss and
64 patches of size 64⇥64 as input to train. The networks
of scale ⇥3 and ⇥4 are fine-tuned from the results of the
⇥2. To train other methods [73, 76, 82] for data scaling ex-
periments, we follow the training details described in their
paper.

7.2. Arbitrary-scale SR

For the Arbitrary-scale SR task, we use the same basic con-
figuration as the ESC. The difference between the ESC
in Classic SR and the ESC in arbitrary-scale SR is that
LTE [32] is used as U , and accordingly, S is also changed
to bilinear interpolation. Training details, including other
models [73, 76], are the same as LTE across all instances,
using the DIV2K dataset, running for 1000 epochs, utilizing
the Adam [30] with �s of 0.9 and 0.999, and leveraging L1
loss. However, since HiT-SRF and our ESC are optimized
for training with the input patches of 64⇥64, we train all
Transformers leveraging 32 input patches of size 64⇥64.
Still, the number of sampling coordinates for training re-
mains the same as RDN+LTE, which is 2304 (482).



Table 7. Quantitative comparison on arbitrary-scale SR task employing LTE [32] as upsampler. The best result on PSNR is bolded.

Methods
Set5 Set14 B100 Urban100

Seen Unseen Seen Unseen Seen Unseen Seen Unseen

⇥2 ⇥3 ⇥4 ⇥6 ⇥8 ⇥2 ⇥3 ⇥4 ⇥6 ⇥8 ⇥2 ⇥3 ⇥4 ⇥6 ⇥8 ⇥2 ⇥3 ⇥4 ⇥6 ⇥8

RDN+LTE [78] 38.23 34.72 32.61 29.32 27.26 34.09 30.58 28.88 26.71 25.16 32.36 29.30 27.77 26.01 24.95 33.04 28.97 26.81 24.28 22.88
ATD-lt+LTE§ [73] 38.28 34.73 32.57 29.21 27.22 34.14 30.64 28.91 26.67 25.21 32.35 29.30 27.77 26.01 24.95 33.12 29.06 26.95 24.41 23.00
HiT-SRF+LTE§ [76] 38.27 34.74 32.59 29.25 27.21 34.03 30.64 28.91 26.68 25.21 32.37 29.30 27.76 26.00 24.94 33.18 29.05 26.89 24.34 22.94
ESC+LTE (Ours) 38.29 34.79 32.72 29.18 27.24 34.05 30.69 28.94 26.70 25.24 32.38 29.32 27.77 26.00 24.96 33.30 29.21 27.04 24.44 23.03

7.3. Real-world SR

For the real-world SR task, we introduce ESC-Real with
a basic configuration of 64, 10, and 5, which denote C,
N , and M , respectively. ESC-Real employs the same up-
sampler as RealESRGAN [59] and SwinIR-Real [36], uti-
lizing it as U , and incorporates four layers of shallow
network (c128k1g1–c128k7g128–LeakyReLU(↵ =
0.2)–c64k1g1) as S. Here, c, k, and g denote channel,
kernel, and group size for convolution, respectively. In this
approach, F s is added into F . We use the RealESRGAN
degradation model and DF2KOST [58] dataset to generate
low-quality images. ESC-real is first trained for 1M itera-
tions using L1 loss, then trained for 400K iterations with L1
loss, adversarial loss, and perceptual loss, using weight fac-
tors of 1, 0.1, and 1, respectively. The network architectures
used for calculating adversarial loss and perceptual loss are
the same as those used in RealESRGAN. In both phases, 48
patches of size 64⇥64 are used as input for training.

8. Additional Results on Arbitrary-scale SR

This section exhibits additional results on the arbitrary-scale
SR task. Additional quantitative results are measures on the
four commonly used evaluation datasets, including Set5 [3],
Set14 [70], B100 [42], and Urban100 [26]. Following pre-
vious research [32], we measure Peak Signal-to-Noise Ra-
tio (PSNR) on the Y channel after cropping the image’s
boundary equivalent to the upscaling factor and converting
it to YCbCr color space. Our ESC+LTE outperforms other
methods on Urban100 at both seen and unseen scales, as
shown in Table 7.

9. Quantitative Results on Real-world SR

Taking a step further, we report quantitative results for the
real-world SR task. To this end, we measure a variety of
metrics (PSNR@Y, SSIM@Y, LPIPS [74], DISTS [11],
FID [24], NIQE [44], MANIQA [64], MUSIQ [27], and
CLIP-IQA [57]) on multiple datasets (RealLQ250 [2], Re-
alSRSet [72], RealSR [4], and DRealSR [60]). As shown in
Table 8, ESC-Real achieves the highest CLIPIQA scores on
all datasets, demonstrating its ability to reconstruct percep-
tually superior images.

Table 8. Quantitative comparisons on real-world SR.

Dataset Metrics RealESRGAN+ SwinIR-Real DASR ESC-Real

RealLQ250 [2]

NIQE # 4.1328 4.1779 4.7858 4.0556
MANIQA " 0.3564 0.3400 0.2789 0.3553
MUSIQ " 62.51 60.48 53.02 62.98
CLIPIQA " 0.5437 0.5348 0.4631 0.5796

RealSRSet [72]

NIQE # 5.3430 5.1037 4.5931 5.0181
MANIQA " 0.3988 0.3872 0.3277 0.3952
MUSIQ " 64.25 63.68 58.82 64.58
CLIPIQA " 0.5942 0.5921 0.5278 0.6156

RealSR [4]

PSNR " 24.53 24.71 25.86 24.52
SSIM " 0.7484 0.7547 0.7617 0.7503
LPIPS # 0.2729 0.2594 0.3113 0.2622
DISTS # 0.1685 0.1609 0.1838 0.1671
FID # 67.01 64.19 63.62 66.81
NIQE # 4.6801 4.6465 5.9682 4.4848
MANIQA " 0.3675 0.3504 0.2663 0.3799
MUSIQ " 59.69 59.64 45.82 61.40
CLIPIQA " 0.4903 0.4736 0.3629 0.5338

DRealSR [60]

PSNR " 26.59 26.52 28.40 26.76
SSIM " 0.7988 0.7923 0.8302 0.79534
LPIPS # 0.2818 0.2838 0.2962 0.2795
DISTS # 0.1464 0.1461 0.1689 0.1503
FID # 23.19 24.63 17.89 21.35
NIQE # 4.7164 4.5683 6.3473 4.7006
MANIQA " 0.3431 0.3275 0.2733 0.3442
MUSIQ " 35.27 34.62 28.63 35.21
CLIPIQA " 0.5179 0.5039 0.3843 0.5564

Table 9. Comparisons of latency on MacBook M2 air, and iPhone
12

Methods ELAN-lt OmniSR ASID-D8 HiT-SRF ESC-lt ESC

M2Air (X 2 R128⇥128⇥3) 318.51 Failed Failed 88145.85 124.07 181.16

iPhone12 (X 2 R32⇥32⇥3) 38.12 Failed Failed OOM 25.57 42.78

10. Efficiency Comparisons beyond GPUs

In real-world deployment scenarios, networks often run on
devices with far more constrained resources than GPUs.
To evaluate our method under such conditions, we bench-
marked several Transformer-based SR models (ELAN [75],
OmniSR [56], ASID-D8 [47], HiT-SRF [76]) against our
ESC(-lt) on a MacBook Air M2 and an iPhone 12. As de-
tailed in Table 9, whereas the other Transformers either fail
to compile or incur out-of-memory (OOM) errors, ESC-
lt achieves up to a 61% reduction in latency compared to
ELAN-light, demonstrating its efficiency in real-world de-
ployments.



Table 10. Comparisons of larger classic SR methods (Params>10M). PT denotes pre-training with 64⇥64 patches and FT denotes fine-
tuning with 96⇥96 patches.

Method Scale #Params (M) PSNR / SSIM
Set5 Set14 B100 Urban100 Manga109

SwinIR [36]

⇥2

11.8 38.42/0.9623 34.46/0.9250 32.53/0.9041 33.81/0.9433 39.92/0.9797
EDT-B [33] 11.5 38.63/0.9632 34.80/0.9273 32.62/0.9052 34.27/0.9456 40.37/0.9811
CAT-A [9] 16.5 38.51/0.9626 34.78/0.9265 32.59/0.9047 34.26/0.9440 40.10/0.9805
ART [71] 16.4 38.56/0.9629 34.59/0.9267 32.58/0.9048 34.30/0.9452 40.24/0.9808
ACT [67] 46.0 38.46/0.9626 34.60/0.9256 32.56/0.9048 34.07/0.9443 39.95/0.9804
SRFormer [82] 10.5 38.51/0.9627 34.44/0.9253 32.57/0.9046 34.09/0.9449 40.07/0.9802
ESC (PT) 12.5 38.52/0.9626 34.57/0.9257 32.58/0.9045 34.24/0.9450 40.18/0.9803
ESC (FT) 12.5 38.59/0.9630 34.70/0.9259 32.61/0.9052 34.49/0.9466 40.38/0.9809

SwinIR [36]

⇥3

11.9 34.97/0.9318 30.93/0.8534 29.46/0.8145 29.75/0.8826 35.12/0.9537
EDT-B [33] 11.7 35.13/0.9328 31.09/0.8553 29.53/0.8165 30.07/0.8863 35.47/0.9550
CAT-A [9] 16.6 35.06/0.9326 31.04/0.8538 29.52/0.8160 30.12/0.8862 35.38/0.9546
ART [71] 16.6 35.07/0.9325 31.02/0.8541 29.51/0.8159 30.10/0.8871 35.39/0.9548
ACT [67] 46.0 35.03/0.9321 31.08/0.8541 29.51/0.8164 30.08/0.8858 35.27/0.9540
SRFormer [82] 10.7 35.02/0.9323 30.94/0.8540 29.48/0.8156 30.04/0.8865 35.26/0.9543
ESC (FT) 12.5 35.14/0.9330 31.10/0.8552 29.53/0.8167 30.23/0.8895 35.60/0.9555

SwinIR [36]

⇥4

11.9 32.92/0.9044 29.09/0.7950 27.92/0.7489 27.45/0.8254 32.03/0.9260
EDT-B [33] 11.6 33.06/0.9055 29.23/0.7971 27.99/0.7510 27.75/0.8317 32.39/0.9283
CAT-A [9] 16.6 33.08/0.9052 29.18/0.7960 27.99/0.7510 27.89/0.8339 32.39/0.9285
ART [71] 16.6 33.04/0.9051 29.16/0.7958 27.97/0.7510 27.77/0.8321 32.31/0.9283
ACT [67] 46.0 32.97/0.9031 29.18/0.7954 27.95/0.7507 27.74/0.8305 32.20/0.9267
SRFormer [82] 10.6 32.93/0.9041 29.08/0.7953 27.94/0.7502 27.68/0.8311 32.21/0.9271
ESC (FT) 12.5 33.00/0.9054 29.21/0.7968 27.95/0.7504 27.89/0.8351 32.54/0.9295

11. Classic SR Results on Larger Model Size

Although we have demonstrated substantial performance
gains over lightweight Transformers (Params<1M), larger
models (Params>10M) remain an active area of research.
To assess our method in this regime, we scale ESC to 12.5M
parameters, on par with the size of SwinIR, and train and
evaluate it accordingly. The scaled ESC uses the window
size of 48⇥48, N = 8, M = 5, C = 192, CConvAttn = 48,
and h = 24. Extra layer normalizations are placed before
the ConvFFNs. We leverage the DF2K dataset and fol-
low the ATD’s training strategy [73], pre-training on small
patches (64⇥64) and then fine-tuning on larger patches
(96⇥96). Table 10 shows that ESC delivers performance on
par with other large-scale SR Transformers.


