Interaction-Merged Motion Planning: Effectively Leveraging Diverse Motion
Datasets for Robust Planning

Supplementary Material

A. Datasets

1. Human-Human Interaction Dataset: ETH-UCY
The ETH-UCY dataset [7, 8] consists of five sub-
datasets: ETH, Hotel, Univ, Zaral, and Zara2, each with
distinct pedestrian densities and scene characteristics.
We alternately select 4 out of 5 scenes to form the train-
ing and validation datasets, and train a separate model
for each configuration. Additionally, since this dataset
does not include a designated robot, we construct the
dataset by alternately assuming each human agent in the
scene as the robot.

2. RL algorithm-based Robot Dataset: CrowdNav
The CrowdNav dataset [2] is a simulation-based dataset
designed to enable collision-free navigation in crowded
environments. To model human interactions, the dataset
first generates human movements by employing the
ORCA algorithm, allowing agents to reach their desti-
nations while avoiding collisions. Subsequently, rein-
forcement learning is used to generate the robot’s tra-
jectory, ensuring it navigates without colliding with hu-
mans, thereby forming the complete dataset. Follow-
ing the dataset composition approach from the previous
study [6], we split the dataset into a 50:50 ratio for the
training and validation sets.

3. Human-Robot Interaction Dataset: THOR and SIT

The THOR dataset [9] is collected in an indoor environ-
ment with real humans and a robot. The data was gath-
ered in an indoor space measuring 8.4 x 18.8 m, with
various fixed obstacles placed throughout. In this set-
ting, real humans navigate toward one of five designated
destinations while avoiding the moving robot. Mean-
while, the robot follows a predetermined path to patrol
the indoor space, regardless of nearby human presence
and without considering human interaction. Unlike the
CrowdNav dataset, where the robot takes human interac-
tion into account, the THOR dataset captures scenarios
where humans adjust their movement in response to the
robot.
The SIT dataset [1] contains indoor and outdoor scenes
where both robots and humans move while considering
their interactions. Data was collected from a total of
10 different scenes, each with varying crowd densities.
Since the test set does not provide ground truth position
information for surrounding agents, we conduct evalua-
tions using the validation set.

B. Backbone Models

We conduct experiments using three different backbone
models. Unlike the GameTheoretic model, DIPP and DTPP
are designed for vehicle datasets, requiring some modifi-
cations to adapt them to the given robot dataset. (1) Ga-
meTheoretic [0] trains the forecaster to generate risky fore-
casts for the ego agent, encouraging the planner to produce
safer plans. To extract a valid task vector from a consis-
tent initial state across different datasets, we omit the step
of training the forecaster to be risky. Instead, we ensure
that the planner considers collisions during its training pro-
cess. (2) DIPP [4] integrates the prediction module with the
planning module, jointly training the prediction model to
improve planning performance. Since the planner is trained
after the predictor, the task vector is extracted from epochs
after the planner’s training begins. Additionally, weights
are extracted at once from the unified module combining
the planner and predictor. (3) DTPP [5] constructs a tree-
structured planner and selects the optimal plan based on
cost, achieving higher performance than single-step plan-
ning methods that directly generate plans. In this study, we
use the model as is, incorporating it as a baseline.

The GameTheoretic uses both the past trajectory of sur-

rounding agents, X'~ Te»=:0 and the future predicted trajec-
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tory Vsurr** generated by the forecaster to embed surround-

ing agents’ feature hg,,.. This feature is then used as the
input to the interaction layer ¥;p¢e-. In contrast, for DIPP
and DTPP, h,,- is constructed solely based on the past tra-
jectory of surrounding agents, X, Zo>+:%, and used as the
input to the interaction layer. Instead, the loss for both the
plan and prediction generated by the independent decoder
from the transformer is provided to simultaneously train the

forecaster and planner in a meaningful way.

C. Evaluation Metrics

1. Average Displacement Error (ADE)

ADE is a metric for evaluating effectiveness by assess-
ing how similar the generated ego agent’s future plan is
to the dataset’s ground truth trajectory. ADE computes
the L2 distance between every time step of the plan and
the corresponding GT point, and then averages these dis-
tances. The detailed formula for the ADE metric used is
as follows;
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Figure 1. Qualitative results on the THOR dataset with GameTheoretic planning model. From (a) to (g) represent the inference results for
each model trained on source domains. The values w indicate the average of weights of task vectors for each source domain in the IMMP
planner.

Table 1. Checkpoint pool P constructed for each planning model.
The checkpoint interval C' refers to the extraction interval of inter-
mediate epoch points.

where N is the number of samples, F' is the number of
future timesteps, x is the generated plan, and g is the
ground truth plan.

. Collision Rate (CR)

Collision Rate is an important metric for evaluating
safety in Motion Planning. It considers a collision to oc-
cur when the distance between certain waypoints in the
generated plan and the ground truth plan is below a spec-
ified threshold. Following the approach in GameThe-
oretic [6], we use a threshold of 0.6. The formula for
Collision Rate is as follows:
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where ¢, is the collision threshold.

. Final Displacement Error (FDE)

FDE is a metric for evaluating goal success. It calculates
the L2 distance between the position at the final time
step of the generated ego agent’s plan and the destina-
tion. The formula for the FDE metric is as follows:
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where T is the final timestep.

. Miss Rate (MR)

Miss rate is also a metric for evaluating goal success,
assessing whether the position at the final time step of
the generated plan deviates from the destination by more
than a specified threshold. We compute the L2 distance

Model Checkpoint Pool P

GameTheoretic (forecaster) | ADE, C =30

GameTheoretic (planner) ADE, CR, FDE, MR, C' =5
DTPP ADE, CR,FDE, MR, C' =1
DIPP ADE, CR, FDE, MR, C' =5

between the endpoint of the plan and the destination, and
here we use a threshold of 0.5 to determine a miss. The
detailed formula for Miss Rate is as follows:
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where €, is the miss threshold.

D. Implementation Details

1. Interaction-Conserving Pre-Merging

We extract key checkpoints from each of the three
trained planning baseline models. Specifically, we select
the checkpoints where ADE, CR, FDE, and MR achieve
their best values and store them in the checkpoint pool P.
The selection of intermediate checkpoints during train-
ing is determined through multiple experiments. For
GameTheoretic [6], unlike DTPP [5] and DIPP [4], a
separate forecaster is used. Therefore, we also extract
forecaster checkpoints following a similar methodology



as the planner. The checkpoints used for each planning
model are in Tab. |
2. Interaction Transfer with Merging

Checkpoints in the checkpoint pool P are separated by
module within the planning model. Specifically, we ex-
tract weights from the LSTM layers responsible for em-
bedding the trajectories of the ego agent and surrounding
agents, denoted as 0.4, and 0,,, respectively. Addi-
tionally, we obtain 6, from the transformer model,
which embeds interactions between the ego agent and
other agents. Other parameters, excluding those re-
lated to embedding, are consolidated and stored together.
When merging trainable parameters, we update them
based on the loss of the target domain in the original
planning model. We use Adam as the optimizer and set
the learning rates to le-3, le-2, and le-3 for GameThe-
oretic, DTPP, and DIPP, respectively. For the scheduler,
we use ReduceLROnPlateau across all three models.

E. Qualitative results

In Fig.3 of the main paper, the correlation between the
merging weights of IMMP and the inference results of mod-
els trained on each source domain is shown when the SIT
dataset is used as the target domain in the GameTheoretic
model. Figure | presents the result when the THOR dataset
is used as the target domain. In cases Fig. 1 (d) and (g),
which show poor inference performance, low weights are
assigned, while in cases Fig. | (e) and (f), which show good
inference performance, higher weights are assigned. This
demonstrates that even when the composition of the target
dataset changes, IMMP effectively identifies the important
source domains.

F. Further Analysis

1. Need for Metric-wise Checkpoint Collection

To demonstrate that metric-wise checkpoints capture
distinct characteristics, we evaluated metric-specific
checkpoints, selected on the Univ dataset, across two
target domains. As shown in Tab. 2, checkpoints from
the same source (Univ) but selected by different met-
rics (e.g., Collision vs. Miss Rate) behave differently
across target domains. Notably, the collision-optimized
checkpoint performs best on THOR but worst on SIT,
suggesting that each metric captures distinct aspects of
the source domain.

2. Hyperparameter Sensitivity: Checkpoint Interval
As shown in Tab. 3, when the GameTheoretic model tar-
gets the SIT domain, we evaluated performance across
different checkpoint intervals C. Our method consis-
tently outperforms the best-performing baseline in Tab. 1
(Ensemble-WTA, ADE: 0.3695), even under various set-
tings of C. This demonstrates that our model requires

Table 2. Target evaluation of metric-wise checkpoints from Univ.

Target | Chckpoint | ADE| Col. Rate| FDE| MissRate |
ADE/FDE | 0.4671 2.54E-04  1.0002 0.8043
SIT Col. Rate | 0.8023 6.08E-04  1.6444 0.9489
Miss Rate | 0.3956  4.29E-04  0.8730 0.7294
ADE/FDE | 0.3692  4.98E-04  0.6602 0.7470
THOR | Col. Rate | 0.2723 491E-04 0.5543 0.4481
Miss Rate | 0.3674  5.19E-04  0.6541 0.7488

Table 3. Effect of checkpoint interval C' on Gametheoretic model
performance in the SIT target domain (without finetuning).

Cvalue | ADE| Col. Rate] FDE] MissRate |
1 0.3234  4.69E-05 0.7471 0.6214
2 0.3219  4.28E-05 0.7424 0.6156
3 0.3220  4.28E-05 0.7433 0.6144
10 0.3243  3.62E-05 0.7548 0.6446
Ours (5) | 0.3157  4.28E-05  0.7300 0.5934

minimal manual tuning and offers high practical utility.
3. Ablation Study on Module Separation

As shown in Sec. A, the robot motion datasets differ in
ego agent type and interaction mechanisms. Our module
separation is designed to reflect these characteristics. To
validate its effectiveness, we conduct an ablation com-
paring the original grouping with variants where two of
the three modules are merged. As shown in Tab. 4, the
results confirm that our original grouping is more effec-
tive.

Table 4. Ablation of Module Separation in DIPP on the SIT target
domain (A: Robot, B: Human, C: Interaction)

Grouping ADE | Col.Rate] FDE| MissRate |
A+B 0.5666  1.36E-04 1.0744 0.8351
B+C 0.5608  2.18E-04  1.0631 0.8217
C+A 0.6108  1.83E-04  1.1462 0.8751

Seperate (origin) | 0.5112  1.60E-04  0.9358 0.7944

4. Correlation Between Domain Similarity and Merg-
ing Weights
We estimate the similarity between the source and tar-
get domains by measuring zero-shot performance, and
visualize the correlation between dataset similarity and
the merging weights. As shown in Fig. 2, there exists
a proportional relationship between the merging weights
and the domain similarity, indicating that more similar
source domains are assigned higher weights.

5. Comparison with Other Merging Techniques
We compare with recent merging baselines listed in
Tab. 5, evaluated on the SIT dataset using the GameThe-
oretic planning model. Existing methods [3, 10] fail
to preserve the hierarchical structure inherent in motion
planning, resulting in notable performance degradation.
In contrast, IMMP effectively transfers knowledge from
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Figure 2. Merging weights with respect to similarity to THOR.

source datasets to the target domain, achieving superior
performance.

Table 5. Comparison with recent merging methods on the SIT
target domain.

Method ADE | Col. Rate | FDE | Miss Rate |,
MuDSC [10] 1.6729 4.21E-03 2.9329 1.0
EMR-Merging [3] 1.5367 2.06E-03 2.8272 0.9941
IMMP 0.3380 5.12E-05 0.9580 0.6976

. Experiments on a Larger Target Domain

We selected SIT and THOR as target domains because
they are real-world datasets collected in actual robotic
navigation environments, where data collection is rela-
tively challenging. Such environments are likely to serve
as realistic target domains in practical applications. We
further evaluate IMMP on Zara2 (3x larger than THOR)
in Tab. 6, proving robust on large-scale domains.

Table 6. IMMP performance on the Zara2 target domain

Method ADE | Col.Rate| FDE| MissRate] Costl]
Domain Generalization [17] | 0.5350 0.01802 1.1291 0.7641 X1
Domain Adaptation [16] 0.5378 0.01657 1.1441 0.7561 X1
Target Only 0.4850 0.01663 1.0047 0.7224 X1
Ensemble-WTA [2] 0.4781 0.01614 0.9917 0.7078 X7
IMMP + Finetune 0.4687 0.01688 0.9580 0.6976 X1
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