Joint Learning of Pose Regression and Denoising Diffusion with Score Scaling
Sampling for Category-level 6D Pose Estimation

Supplementary Material

In this supplementary document, we first provide imple-
mentation details of our method (Section S.1), followed by
extensive experimental analyses that complement the main
paper (Section S.2). Lastly, we show additional qualitative
results that demonstrate our method’s effectiveness across
various object categories and challenging scenarios. (Sec-
tion S.3).

S.1. Implementation Details

Architecture. Based on the architecture of GenPose [12],
our network consists of PointNet++ [8], which extracts a
1024-dimensional global feature from the input point cloud.
The time step ¢ and noisy pose p(t) are embedded through
MLPs to produce 128-dimensional and 256-dimensional
feature vectors, respectively. These three features are con-
catenated to a 1408-dimensional vector and fed into the de-
noising diffusion head to predict a 9D score vector (6D ro-
tation representation and 3D translation). The regression
head consists of MLP of size 1024x512x512x9, directly
predicting the 6D representation and 3D translation vectors.

6D Rotation Representation. For rotation representa-
tion, we employ the continuous 6D representation follow-
ing [12, 16], where ggs maps SO(3) to 6D representation
by retaining the first two columns of the rotation matrix:

QGS([al az a3])=[a1 GQ] (D

fas maps 6D representation back to SO(3) through Gram-
Schmidt-like orthogonalization [16]:

fas ([ar az]) =[b1 by bs] (2)
T
N(a1) ifi=1
bi = N((lg — (bl . ag)bl) ifi=2 (3)
b1 X by ifi =3

Training Details. In the pre-training phase, we train only
the PointNet++ encoder and regression head, where the re-
gression head outputs 9D vectors (6D rotation and 3D trans-
lation). The network is optimized by first mapping the pre-
dicted 6D rotation to SO(3) to compute the geodesic loss
and combining it with L2 loss for translation. We adopt the
geodesic distance for rotation loss, as it provides a clearer
learning goal on SO(3) compared to L2 loss [2]. Also, as
shown in Figure S1, our experiments demonstrate superior

performance with geodesic loss (blue) compared to L2 loss
(red). For objects that are fully symmetric around the y-
axis (bottle, bowl, and can) in the NOCS dataset [10], we
compute the rotation loss only with the y-axis to account
for their symmetry properties. In the joint learning phase,
we initialize the encoder and regression head with the pre-
trained weights and simultaneously train both regression
and diffusion heads. The regression head maintains its pre-
training loss function, while the diffusion head is optimized
with the score-matching objective. The network is then up-
dated using the sum of these two losses.
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Figure S1. Comparison of pre-training performance on REAL275
dataset using different rotation loss functions for the regression
head.

S.2. More Results and Analyses
S.2.1. Inference Efficiency with DDIM Sampler

Diffusion-based methods inherently suffer from computa-
tional burden due to multiple sampling steps required dur-
ing inference. To address this limitation and enable explicit
control over the number of sampling steps, we replace the
original adaptive-step PF-ODE solver with a deterministic
DDIM sampler [18], as mentioned in the main paper (Fig-
ure 4(d)). We perform sampling using the following DDIM
update equation:

X—1 = X + 07 (wy -89 (%y, 1))
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where x; and x;_ represent a generated pose samples at
time steps ¢ and ¢ — 1 respectively, w, is our proposed score



Method Num steps ~ Speed(FPS)T  5°2cm 1 10°2cm T Params(M)J

OursPP™ 500 2.70 15.9 23.6 22
OursPPIM+G 500 2.70 52.7 727 22
OursPPIM+G 200 6.81 52.7 72.8 22
OursPPIM+G 100 14.1 526 727 22
OursPPIM+G 50 254 524 72.6 22
OursPPM+G 10 42.9 50.8 71.3 22
HS-Pose [19] 1 50 46.5 68.6 6.1
Query6DoF [20] 1 349 49.0 68.7 19.4

Table S1. Comparison of forward-only methods and ours with dif-
ferent sampling steps on REAL275 dataset for single frame pose
estimation. For Ours, "™ indicates DDIM Sampler without score
scaling, and PP™"* indicates DDIM Sampler with score scaling

guidance.

scaling weight, o, represents the noise level at time step ¢,
se(x¢, t) is the learned score function, 7 controls the stochas-
ticity of sampling (set to 0 for deterministic sampling), and
e ~ N(0,1) is Gaussian noise.

As shown in Table S1, our method with score scal-
ing guidance (Ours®®™+%) demonstrates remarkable ro-
bustness across different sampling steps for single pose esti-
mation. Even with only 10 sampling steps, we achieve 42.9
FPS while maintaining competitive accuracy. Notably, the
performance remains nearly constant from 500 steps down
to 50 steps, highlighting the effectiveness of our score scal-
ing approach. In contrast, performance drops dramatically
without scoring scaling guidance (OursPP™: 52.7 — 15.9,
72.7 — 23.6), further underscoring the critical role of our
proposed guidance method.

Compared to recent forward-only baselines (HS-
Pose [19] and Query6DoF [20]), our approach offers a fa-
vorable speed-accuracy trade-off while using significantly
fewer parameters, thus making it well-suited for real-time
applications.

S.2.2. Analysis of Pre-training strategies

Pre-training encoders has been widely adopted in vari-
ous vision tasks to leverage learned representations, with
notable success in models like Latent Diffusion Models
(LDMs) [9] where pre-trained image encoders significantly
reduce computational costs while maintaining generation
quality. However, our investigation reveals that this estab-
lished practice does not directly translate to category-level
6D pose estimation with point cloud inputs. While previ-
ous works like [, 4, 6, 14, 15] have utilized various point
cloud encoders (e.g., 3DGC [5], PointNet++ [8]) trained in
an end-to-end fashion, we systematically evaluated different
pre-training strategies within the GenPose framework to po-
tentially accelerate convergence and enhance performance.

As shown in Figure 4(a) in the main paper, we compared
various pre-training strategies on NOCS dataset: classifica-
tion of object categories (orange), point cloud reconstruc-
tion (green), and direct 6D pose regression (purple). Sur-
prisingly, both classification and reconstruction pre-training

show marginal or even negative impact on convergence
compared to training from scratch (While Figure 4(a) shows
results with PointNet++ encoder, similar patterns were ob-
served when using Transformer-based encoder [7]). In con-
trast, pre-training with direct 6D pose regression demon-
strates notably faster convergence and better performance.
We hypothesize that this phenomenon stems from the higher
complexity of 6D pose estimation compared to classifica-
tion or reconstruction tasks. Unlike classification which
extracts category-discriminative features or reconstruction
which preserves the local neighborhood structures [11], 6D
pose estimation demands the encoder to learn both fine-
grained geometric features and their global spatial relation-
ships in SE(3) space. When pre-trained on other tasks,
the encoder learns features that may be suboptimal or even
counterproductive for pose estimation. This observation led
to our final design choice of joint learning with pose regres-
sion, which effectively combines the benefits of pre-trained
pose-aware features with diffusion-based distribution mod-
eling.
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Figure S2. Performance on different weight parameters. All re-
sults are based on single pose sampling.

S.2.3. Ablation studies on Scaling Guidance

Comparison of Scaling Schedulers. To analyze the im-
pact of guidance scheduling, we examine three different
score scaling strategies:

Winaz + (wmm - wmagc)t (linear)
Wt = S Winin + (Wimaz — Wimin) exp(—5t)  (exponential )
Winag (constant)

®)
Here, we set wmin = 1.0 and w.ma: = 4.0. Table S2 shows
similar quantitative performance across different schedulers
on REAL275 dataset, though Figure S3 reveals their dis-
tinct behaviors when handling symmetric objects. Using
50 identical random noise inputs, the constant scheduler
(a) leads to mode collapse with strong convergence to spe-
cific modes. The linear scheduler (b), which gradually in-
creases guidance weight, shows improved but still limited



Ground-truth (a) Constant scaling

(c) Exponential scaling
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Figure S3. Comparison of rotation distributions for 50 sampled poses across different scaling schedules.

capability in capturing the full symmetric distribution. In
contrast, the exponential scheduler (c), which begins with
weak guidance and gradually increases over time, best pre-
serves the symmetric distribution while maintaining pose
fidelity. This observation highlights that weak guidance in
early time steps is crucial for exploring the symmetric dis-
tribution space, while stronger guidance near ¢ — 0 helps
improve pose quality.

Guidance Scheduler = 5°2cm  5°5cm 10°2cm 10°5cm
Constant 52.7 61.2 73.2 84.5
Linear 52.7 61.1 73.2 84.4
Exponential 52.6 61.0 73.4 84.5

Table S2. Results on REAL275 dataset according to score scaling
weight scheduler.

Choice of the weight parameter for Guidance. We an-
alyze the impact of the maximum weight parameter wp,qx
on model performance while fixing wymi» = 1 and using ex-
ponential scheduling. As shown in Figure S2, pose estima-
tion accuracy improves as wmqo increases from 1 to 4 on
the REAL275 dataset (wymq. = 1 refers to w/o Guidance).
However, the performance plateaus beyond w,q. = 4, with
minimal or no improvements for larger values. We set
Wmas = 4 as our default value based on these empirical re-
sults.

S.2.4. Generalization ability

Following GenPose [12], we evaluate our model on unseen
categories in REAL275, focusing on symmetric objects. As
presented in Table S3, our method exhibits generalization
capabilities comparable to those of GenPose, whereas other

baseline [17] suffers significant performance degradation.
This indicates that diffusion-based models can generalize
effectively to unseen object categories, particularly when
they share geometric structures with the training set.

Category ~ Method 5°2cm 5°5cm 10°2cm 10°5cm
SAR-Net | 58.1/36.4 66.0/47.3 83.7/59.4  93.6/81.5
bowl GenPose | 85.4/64.5 92.6/72.5 93.1/87.2 100.0/98.6
Ours 87.4/65.7 93.4/72.3  93.9/88.4  100.0/99.1

SAR-Net | 43.5/11.7 54.0/23.0 61.3/33.6  79.8/68.0

bottle GenPose | 52.6/39.0 60.9/53.2 81.4/73.6  92.7/94.6
Ours 54.8/42.1 65.4/57.0 81.3/74.4  93.4/93.1

Table S3. Cross-category results on REAL275. Left and right of
‘I’ denote seen and unseen category performance, respectively.

S.3. Additional Qualitative Results

Figure S4 provides a qualitative comparison between our
method and the baseline (GenPose), illustrating their dis-
tinct sampling processes. The baseline’s approach (shown
in pink dashed box) requires multiple steps: (1) sampling
K(=50) pose candidates, (2) filtering out low-likelihood
poses using an additional EnergyNet, and (3) computing the
final pose through mean pooling the remaining 30 poses. In
contrast, our method (shown in green dashed box) employs
score scaling guidance to generate high-quality poses with
just a single pose sampling, eliminating the need for multi-
ple pose candidates and additional filtering networks.
Figure S5 presents additional qualitative comparisons
between our method and GenPose on the HouseCat6D.
GenPose (columns 1-2) first samples 50 pose candidates
and computes the final output through filtering and mean
pooling. While our method (columns 3-4) also samples 50
poses for comparison with the baseline, we randomly select
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Figure S4. Qualitative comparison of Ours (column 5) and Baseline (column 2~4)

a single pose to visualize the final output, demonstrating the
effectiveness of our score scaling guidance. For asymmet-
ric objects (Box, Teapot, Shoe), while the baseline gener-
ates outlier samples that deviate from the ground truth pose
(column 1), our method consistently produces pose samples
that closely align with the ground truth (column 3). This im-
provement can be attributed to our guidance method, which
effectively steers the sampling process toward high-density
regions of the pose distribution. The results for symmet-
ric objects, particularly the Glass example, further highlight
the advantages of our method. The baseline shows scattered
pose samples around the symmetric axis, while our method
with score scaling guidance accurately captures the object’s
symmetry. Specifically, our method precisely identifies the
y-axis as the axis of symmetry (column 3), maintaining ap-
propriate pose diversity while ensuring high-quality predic-
tions.

Figure S6 further demonstrates qualitative results on the
ROPE dataset, highlighting our method’s capability to han-
dle objects with discrete symmetries. In the case of ‘Boxed
beverage’, which inherently has two symmetric ground
truth poses (front and back), our method (column 3) suc-
cessfully captures both valid pose modes. This demon-
strates that our score scaling guidance effectively preserves
the multi-modal nature of the pose distribution when deal-
ing with objects that have multiple ground truth poses due
to symmetry.
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Figure S5. Qualitative comparison between Ours (column 3~4) and Baseline (column 1~2) on HouseCat6D.
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Figure S6. Qualitative comparison between Ours (column 3~4) and Baseline (column 1~2) on ROPE.



