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Figure 1. Comparison of three different memory mechanisms

1. Motivation for Memory Design

In this section, we outline the motivation behind the design
of LOMM, comparing three different memory systems: (1)
Latest Object Memory (LOM), (2) Similarity-based memory,
and (3) Momentum-based memory. Fig. 1 and 2 illustrate
how each memory mechanism operates.

Latest-state-aware object memory uses the foreground
probability of objects as a weight to update the object infor-
mation at each frame. This means that the most recent and
valid information is updated, allowing accurate memory up-
dates even in scenarios where new objects appear, as seen in
Fig. 2-(a) at frame #4. Additionally, when objects disappear,
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the foreground probability is low, so the previous informa-
tion is largely preserved, maintaining the object information
well even in situations like frame #2. This novel mecha-
nism ensures consistent memory updates, both for newly
emerging and existing objects, offering robust performance
in dynamic scenarios.

Similarity-based memory [16, 19] updates the memory
by assessing the similarity between the memory from time
t− 1 and the objects at time t. When the object information
at time t shows high similarity to the memory objects, it
receives a significant weight during the update; however, if
the similarity is low, the update is minimal. This behavior is
evident in Fig. 2-(b), where at frame #2, the memory retains
information about the person who has disappeared, while
the latest information for the dog is updated. As a result, we
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Figure 2. Memory update mechanisms of three different memory systems.

observe a performance improvement over the baseline in Tab.
3**-(b). However, at frame #4, when a new person appears,
the memory structure struggles to update effectively due to
the low similarity to the existing memory.

Momentum-based memory [4] assigns a high weight
(e.g., 99%) to the memory information from time t− 1 and
a low weight (e.g., 1%) to the objects at time t during the
update. As a result, the object information from the first
frame is retained at a high ratio, while new objects or the
latest information are hardly updated.

2. Training Details

2.1. Datasets.
We evaluate the performance of our LOMM using stan-
dard benchmark datasets: YouTubeVIS datasets (2019, 2021,
2022) [17] and OVIS [14], as detailed below. Introduced by
[17] alongside the pioneering study on the Video Instance
Segmentation (VIS) task, the YouTube-VIS datasets con-
sist of high-resolution YouTube videos across 40 categories.
The 2019 release includes 2,238 videos for training, 302 for
validation, and 343 for testing. In its 2021 update [18], the
dataset was expanded to include 2,985 training videos, 421
validation videos, and 453 test videos, allowing for more
extensive testing and development of VIS models. The 2022
version includes an additional 71 long videos in the valida-
tion set, while the training set remained the same as in the

**Green number indicates table in the main paper.

2021 version. OVIS dataset [14] presents significant chal-
lenges with videos that often feature occlusions and long
sequences that mirror complex real-world scenarios. This
dataset is particularly demanding, with a greater number of
objects and frames compared to YouTube-VIS, enhancing
the difficulty of segmentation and tracking tasks. OVIS com-
prises 607 training videos, 140 validation videos, and 154
test videos, providing a robust platform for evaluating the ef-
fectiveness of VIS approaches under challenging conditions.

2.2. Implementation Details.
For our segmentation network, we employ the Mask2Former
architecture [2] equipped with three distinct backbone en-
coders: ResNet-50 [5], ViT-L and ViT-H [3]. All backbones
are initialized with parameters pre-trained on COCO [12]. To
improve memory efficiency with the ViT-L and ViT-H, we
incorporate a memory-optimized VIT-Adapter [1], aligning
with recent advancements in network efficiency [21]. The
segmentation network is further enhanced through pretrain-
ing with a contrastive learning approach for better object
representation [9, 16, 19, 21]. Our tracking framework inte-
grates two networks TE and TA, each comprising three trans-
former blocks and enhanced with a referring cross-attention
layer [20] for improved accuracy.

For training, our tracking networks are trained with all
other parameters frozen as previous studies [10, 20]. We em-
ploy the AdamW optimizer [13], initializing with a learning
rate of 1e-4 and a weight decay of 5e-2. Training is con-
ducted over 160k iterations, with learning rate reductions
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Figure 3. Limitation. Our method cannot handle cases where the segmentation network fails to detect objects. However, for detected objects,
it demonstrates consistent tracking performance.

scheduled at the 112k mark. We process five frames from
each video in a batch of eight during training, adjusting the
frame sizes to maintain a shorter side between 320 and 640
pixels, and ensuring the longer side does not exceed 768
pixels. In all experimental settings, we incorporate COCO
joint training, as utilized in prior works [6, 7, 15, 19, 20].
For inference, the shorter side of input frames is scaled to
480 pixels, maintaining uniform aspect ratios. We adopt a
temporal refiner [20] for our offline model. We empirically
set λsim as 1.0. In the online experiments using the R50 and
ViT-L backbones, eight RTX2080 Ti GPUs are employed.
For the offline experiments, eight RTX3090 Ti GPUs are
used, while the experiments utilizing the ViT-H backbone
are conducted with eight RTX A6000 GPUs.

Segmentation network. To achieve distinctive object
representation, we employ the following contrastive loss for
pretraining the segmentation network S:

Lembed = − log
exp (v · k+)

exp (v · k+) +
∑

k− exp (v · k−)

= log

[
1 +

∑
k−

exp
(
v · k− − v · k+

)]
,

(1)

where k+, and k− denote positive embedding and nega-
tive embedding from anchor embedding v. This contrastive
loss is widely applied in the VIS field [9, 11, 16, 19, 21],
learning frame-to-frame associations to create better object
representations.

Early training. The initial outputs from the tracking
networks TE and TA are also typically noisy. To address
this, we utilize the predictions ŷ from Q̃∗

t for ground truth
assignment, formulated as:

σ́ = argmin
σ∈SN

NGT∑
n=1

LMatch

(
ynf(n), ŷ

σ(n)
f(n)

)
. (2)

The prediction ŷ provides guidance for rapid convergence in
the same format as the tracked output of MinVIS [8].

2.3. Additional Qualitative Results
We provide additional comparisons with state-of-the-art mod-
els, as shown in Fig. 4, to highlight the robustness of our

model in challenging scenarios where objects frequently
appear and disappear. Existing methods, including CTVIS
[19], DVIS-DAQ [22], and DVIS++ [21], often fail to track
accurately by either misidentifying reappearing objects as
new or confusing newly appeared objects with existing ones.
By utilizing a robust memory mechanism and an effective
object association strategy, our model maintains consistently
discriminative embeddings, significantly enhancing both seg-
mentation and tracking performance.

2.4. Limitation
Our method adopts a decoupled framework, where the seg-
mentation network is frozen while training the tracking net-
work. As a result, it cannot handle objects that the segmen-
tation network fails to detect. Nevertheless, our approach
achieves significant improvements in long-term consistent
tracking, a fundamental challenge in VIS. As shown in Fig. 3,
even when the segmentation network misses certain objects,
our method maintains robust tracking.
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Figure 4. Qualitative comparison of LOMM with CTVIS, DVIS-DAQ, and DVIS++ on challenging scenarios in YTVIS22 dataset.
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