Latent Diffusion Models with Masked AutoEncoders

Supplementary Material

A. Autoencoders

AutoEncoders (AEs) [33] are optimized by solely relying
on a reconstruction loss, compressing the input into a more
compact latent space and reconstruct it back. For its objec-
tive, Mean Squared Error (MSE) is commonly used:
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where paaa () is the data distribution. The encoder fy(x)
maps the input into the latent z, and the decoder gy(z) recov-
ers the latent z back to the input. ¢ and 6 are the parameters
of the encoder and decoder networks, respectively.

Denoising AutoEncoders (DAEs) [44] is trained to recover
the original input from the noised one for the robust latent
features with improved generalization. The objective is
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where p.(&|x) represents a corrupted data distribution.

Variational AutoEncoders (VAEs) [20] adopt a probabilis-
tic framework by encoding the input data into a latent vari-
able distribution instead of a fixed vector, facilitating sam-
pling. VAEs are trained using the Evidence Lower Bound
Loss (ELBO), which combines a reconstruction loss with a
prior matching term, i.e., KL-divergence to regularize the
latent space towards a Gaussian distribution:
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where g4(z|x) is the distribution of latent z encoded from
the input @ ~ pya and py(x|2z) is the distribution of recon-
structed « from z. KL-divergence is scaled by k..

StableDiffusion VAEs (SD-VAEs) [11, 32] are built upon
the VQGAN [10], the autoencoder adopted in traditional
LDMs [32]. Following the VQGAN, SD-VAEs integrate
an additional adversarial network and train with perceptual
loss (LPIPS) [46] for an improved perceptual quality in the
compressed space. Unlike VQGAN, however, SD-VAEs
omit the quantization layer entirely; instead, it simply adopts
continuous features. In this paper, we follow the SD-VAEs
settings from StableDiffusion3 [11], unless noted otherwise.

The overall objective of SD-VAEs is
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The third term corresponds to the adversarial loss scaled by
Ap, where D(z) denotes the discriminator function. The last
LPIPS loss term incorporates the feature extraction function
1 up to [ layers of a pre-trained network, with w; as the
layer-specific weight, scaled by Appips.

Masked AutoEncoders (MAEs) [13] were originally pro-
posed as a self-supervised learning method for represen-
tation learning based on Vision Transformers (ViTs) [9].
The MAEs encoder fy(x,) maps a masked-out image
x, ~ p(x,|z) into a latent z, and its decoder gy(z) re-
constructs the original input & ~ pga, () from z along with
learnable mask tokens. Since MSE loss applies only to mask
tokens, the actual loss acts more as a prediction loss than a
reconstruction loss. Omitting the mask tokens for simplicity,
the objective can be expressed as
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where M is a fixed-ratio random binary mask.

B. Implementation Details

B.1. Experimental Setup for Autoencoders

Datasets. We use ImageNet-1K [7] training set for training
autoencoders, and evaluate them on the ImageNet- 1K test set,
ADE20k [47] test set, and CelebAMask-HQ [23]. ADE20K
and CelebAMask-HQ are segmentation datasets containing
ground truth masks in pixel-level.

Implementation Details. Our VMAE adopts a symmet-
ric ViT-based encoder—decoder architecture. The encoder
partitions an input image x € R¥>*W 3 into patch tokens
x; € R>wxd with patch size (h, w) = (32, 32) and embed-
ding dimension d = 192. A masking ratio of 0.6 is applied,
and the visible patches are processed by 12 Transformer
layers. The decoder prepends learnable mask tokens to the



encoded sequence and reconstructs the full image using an-
other 12 Transformer layers. We impose a KL-divergence
loss on the latent representations and employ both pixel-
wise reconstruction loss and perceptual loss on the decoder
outputs.

We train all autoencoders using the optimal hyperparam-
eters for each model on 8§ NVIDIA A100 GPUs (40GB).
The base learning rate is set to 10~° for convolution-based
models (AEs, DAEs, VAEs, and SD-VAEs), while 104
for our VMAEs. Global batch size is set to 2048 except
for the SD-VAEs, which require smaller batch size (256)
for stable training of the adversarial network, following the
implementation in VQGAN [10].

B.2. Experimental Setup for Image Generation

Datasets. We select the following datasets to test various
aspects of generation performance. For unconditional image
generation, we use 256 x 256 downscaled CelebA-HQ [18],
a collection of 30,000 high-quality celebrity face images,
commonly used for assessing face generation tasks. For
class-conditioned image generation, we train the diffusion
model on ImageNet-1K [7], a large-scale dataset contain-
ing over 1.2 million labeled images on 1,000 categories,
providing a rigorous benchmark.

Implementation Details. We employ DiT-B/1 [31] as the
diffusion model across all datasets, maintaining fixed hy-
perparameters for each dataset to ensure fair comparisons
among autoencoders. The learning rate is set to 2 x 10™4
and the global batch size is fixed to 1024 for all datasets. To
mitigate divergence caused by uncontrolled attention logit
growth, we apply QK normalization [6]. We train for 100K
iterations on ImageNet and 60K on CelebA-HQ. For all other
configurations, we use the default settings in Yao and Wang
[45]. During sampling, we use a 250-step Euler integrator
and apply classifier-free guidance (CFG) with a consistent
scale across all architectures for class-conditional genera-
tion.

Evaluation Metrics. Inception Score (IS) [35] measures
how well a model captures the full class distribution while
producing convincing class-specific samples. Generative
Fréchet Inception Distance (gFID) [15] calculates the dis-
tance between two image distributions in the Inception-v3
[42] latent space, capturing both fidelity and diversity, and is
widely regarded as more consistent with human judgment.
sFID [28], a variation of FID using spatial features, better
captures spatial relationships and high-level structure in im-
age distributions. Improved Precision and Recall [21] both
assess the fidelity of generated samples in different ways.
Specifically, precision measures how realistic or high-quality
the generated samples are, while recall evaluates whether
the model captures the full diversity of the real dataset.



Figure I. Additional Class-Conditional Generation Examples on ImageNet-1K. We present additional examples of class-conditional
generation on ImageNet-1K (256 x 256) across various classes.
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Figure II. Uncurated Class-Conditional Generation on ImageNet-1K. We present a collection of uncurated class-conditional generation
examples on ImageNet-1K at a resolution of 256 x 256. Each subcaption indicates the class name along with the corresponding class index.
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