
Learnable Logit Adjustment for Imbalanced Semi-Supervised Learning under
Class Distribution Mismatch

Supplementary Material

A. Additional Related Works
A.1. Class-imbalanced fully supervised learning
Class-imbalanced learning (CIL) algorithms are used to
train unbiased classifiers when the class distribution of the
training set is class-imbalanced. Resampling techniques
[1, 7, 18, 25] are used to re-balance the class distribution
by oversampling minority class samples or undersampling
majority class samples. Reweighting techniques [12, 21, 24,
48, 64] re-balance the gradients for each class by assigning
higher weights for minority classes. Loss functions intro-
duced by Cao et al. [6] and Ren et al. [52] aim to minimize
a bound on generalization error. Kim et al. [29] and Yin
et al. [70] focused on transferring knowledge from majority
class data to minority class data. Kang et al. [27] proposed
decoupling the learning of features and classifiers, while
Menon et al. [47] introduced post-hoc logit-adjustment to
minimize the balanced error. Recently, class-balanced dis-
tillation [23, 45], contrastive learning [11, 26, 46, 58], and
multi-expert learning [5, 41, 60, 68, 74, 75] have been used
for CIL.

A.2. Semi-supervised learning
SSL algorithms aim to improve classification performance
by utilizing unlabeled samples for training. One SSL tech-
nique, called entropy minimization [16], encourages the
classifier to produce confident class predictions for unla-
beled samples by employing pseudo-labels [38]. Another
SSL approach, consistency regularization [49, 51, 55], en-
forces consistency in the class predictions for two aug-
mented versions of the same unlabeled sample. FixMatch
[54] and ReMixMatch [3] incorporate both entropy min-
imization and consistency regularization into their frame-
works, leveraging strong data augmentation techniques [10,
13]. In addition, ReMixMatch also incorporates Mixup reg-
ularization [2, 57] and rotation-based self-supervised learn-
ing [15]. Recently, CoMatch [42] introduced graph-based
contrastive learning, and FlexMatch [73] introduced cur-
riculum pseudo-labeling. FreeMatch [62] and SoftMatch
[8] extended curriculum pseudo-labeling by using exponen-
tial moving averages of prediction confidence and truncated
Gaussian functions, respectively.

B. Time complexity of the proposed algorithm
To verify that learning λ adds negligible time complex-
ity compared to solely training the base SSL algorithm,
we measured the FLoating point OPerations per Sec-

ond (FLOPS) for the training of the base SSL algorithm
(FixMatch and ReMixMatch) and the base SSL algo-
rithm+LLA. We conducted experiments on CIFAR-10-LT
with Nvidia 3090ti. The results are summarized in Tab. 6.
We can observe that learning λ with LLA has a negligible
impact on time complexity.

CIFAR-10-LT

Algorithm iteration/sec

FixMatch 18.52
FixMatch+LLA 18.38

ReMixMatch 6.80
ReMixMatch+LLA 6.76

Table 6. FLOPS for the training of FixMatch, FixMatch+LLA,
ReMixMatch, and ReMixMatch+LLA on CIFAR-10-LT.

C. Illustration of the test phase
As we described in the main paper, the proposed algorithm
also adjusts the class predictions on test samples. The test
phase of the proposed algorithm is illustrated in Fig. 5.

Figure 5. Test phase of the proposed algorithm

D. Pseudo code of the proposed algorithm
Algorithm 1 provides the pseudo-code of the proposed al-
gorithm including both training and test phases.

E. Further details of datasets
CIFAR-10-LT and CIFAR-100-LT are artificially gener-
ated long-tailed datasets that sample images from CIFAR-
10 and CIFAR-100 [33], respectively. The numbers of



Algorithm 1 Pseudo code of the proposed algorithm

Input: Labeled set L, unlabeled set U , test set X , network parameters θ, parameters for LLA λ
Output: Adjusted class predictions for test samples f∗θ (xtestt ) for t = 1, . . . , T
while training do

Generate minibatchesML = {(xb, yb) : b ∈ (1, . . . , B)} ⊂ L andMU = {(ub) : b ∈ (1, . . . , µB)} ⊂ U
Calculate logits for weakly augmented unlabeled images gθ (α (ub)) = ω (ψ (α (ub))) for b = 1, . . . , µB
Adjust logits for weakly augmented unlabeled images g∗θ (α (ub)) = gθ (α (ub))− log ϕ (λ) for b = 1, . . . , µB
Generate refined pseudo-labels q∗b = ϕ (g∗θ (α (ub))) for b = 1, . . . , µB
Calculate logits for weakly augmented labeled images gθ (α (xb)) = ω (τyb

× ψ (α (xb))) for b = 1, . . . , B
Calculate logits for strongly augmented unlabeled samples gθ (A (ub)) = ω

(
νq∗b × ψ (A (ub))

)
for b = 1, . . . , µB

Adjust logits for weakly augmented labeled images g∗θ (α (xb)) = gθ (α (xb))− log ϕ (λ) for b = 1, . . . , B
Adjust logits for strongly augmented unlabeled images g∗θ (A (ub)) = gθ (A (ub))− log ϕ (λ) for b = 1, . . . , µB

Compute the class-averaged loss for labeled minibatch Ll =
1
KΣk

Σbpb,k log g∗
θ (α(xb))k

Σbpb,k+ϵ

Compute the class-averaged loss for unlabeled minibatch Lu = 1
KΣk

Σbq
∗
b,k log g∗

θ (A(ub))k
Σbq∗b,k+ϵ

Compute the training loss of the base SSL algorithm Lbase with the refined pseudo-labels q∗b for b = 1, . . . , µB
Compute the total training loss L = Lbase + Lc = Lbase + Ll + Lu

∆θ ∝ ∇θLbase, θ ← θ +∆θ
∆λ ∝ ∇λLc, λ← λ+∆λ

end while
Calculate logits for test set gθ (xtestt ) = ω (ψ (xtestt )) for t = 1, . . . , T
Adjust logits for test set g∗θ (x

test
t ) = gθ (x

test
t )− log ϕ (λ) for t = 1, . . . , T

Obtain the adjusted class predictions f∗θ (xtestt ) = argmaxk g
∗
θ (x

test
t )k for t = 1, . . . , T

labeled and unlabeled images of the kth class, denoted
as Nk and Mk, respectively, can be expressed as Nk =

N1 × (NK/N1)
k−1
K−1 and Mk =M1 × (MK/M1)

k−1
K−1 . For

CIFAR-10-LT, we set N1 as 1500 and M1 as 3000. We first
conducted experiments under γl = γu, while varying the
imbalance ratio as 50, 100, and 150. Then, we conducted
experiments where γu is unknown and γl ̸= γu, while set-
ting γl = 100 and varying γu as 1, 50, and 150. For CIFAR-
100-LT, we set N1 as 150 and M1 as 300. We conducted
experiments under γl = γu, while varying the imbalance
ratio as 20, 50, and 100.

STL-10-LT is an artificially generated long-tailed
dataset that samples images from STL-10 [9], where the
number of labeled images of the kth class, denoted as Nk,
can be expressed as Nk = N1 × (NK/N1)

k−1
K−1 . Note that

the class distribution of the unlabeled set of STL-10-LT is
unknown. We set N1 as 450 and used all 100,000 unlabeled
images for training. We conducted experiments while vary-
ing γl to 10 and 20.

Small-ImageNet-127 is a down-sampled variant of
ImageNet-127 [22], which was created by categorizing the
ImageNet [53] into 127 classes according to the WordNet
hierarchy. The training set consists of 1,281,167 images
and exhibits class imbalance, with an imbalance ratio of
286. Fan et al. [14] down-sampled the images to 32×32
and 64×64 and used 10% of the training set as a labeled
set. Following [14, 66], we conducted experiments on

Small-ImageNet-127 using only FixMatch because train-
ing ReMixMatch requires an excessive training cost. Note
that the test set of Small-ImageNet-127 also has imbalanced
class distribution.

F. Further details of experimental setup and
baseline algorithms

We used the Adam optimizer [30] for training with a learn-
ing rate set to 2 × 10−3. We used exponential moving av-
erage (EMA) of the model parameters at each iteration with
a decay factor of 0.999, to assess the classification perfor-
mance on the test set. Wide ResNet-28-2 [72] was used as a
deep CNN for the experiments on CIFAR-10-LT, CIFAR-
100-LT, and STL-10-LT, while ResNet-50 [19] was used
for Small-ImageNet-127. For CIFAR-100, we set the pa-
rameter of weight decay to 0.08 because CIFAR-100 has
relatively many classes. For other datasets, we set the pa-
rameter of weight decay to 0.04 when N +M < 3 × 104,
while we set it to 0.01 for FixMatch and 0.02 for ReMix-
Match when N +M ≥ 3× 104. This is due to the reduced
effectiveness of weight decay with larger training set sizes.
Similarly, we set the hyperparameter δ of EFCC to 0.1 when
N+M < 3×104 and set it to 0.2 otherwise. For the exper-
iments using FixMatch, we trained the proposed algorithm
for 500 epochs (1 epoch=500 iterations) with both labeled
and unlabeled minibatches set to a size of 64. We did not
use confidence threshold η to employ every unlabeled sam-



ple. Instead, we reduced the risk associated with the use
of incorrect pseudo-labels by employing soft pseudo-labels.
For the experiments using ReMixMatch, we trained the pro-
posed algorithm for 300 epochs with labeled minibatches of
size 64 and unlabeled minibatches of size 128. When the
class distribution of the unlabeled set is unknown, we did
not employ the distribution alignment technique because it
relies on the class distribution of the labeled set as an ap-
proximation for the unlabeled set. Instead, we included a
classification loss for weakly augmented labeled images in
the Lbase.

For CIFAR-10-LT, CIFAR-100-LT, and STL-10-LT, we
conducted experiments three times, varying the random
seed each time. We used Nvidia Tesla-V100 and 3090ti for
the GPU server, and PyTorch 1.11.0 and 1.12.1 for the deep
learning library. The experimental results in the main pa-
per can be reproduced by implementing the code provided
in the supplementary material. We compared the classifica-
tion performance of LLA with that of various baseline al-
gorithms. 1. For SSL algorithms, we used FixMatch [54]
and ReMixMatch [3] as baseline algorithms. 2. For CISSL
algorithms, we used DARP, DARP+LA, DARP+cRT [28],
CReST, CReST+LA [66], ABC [40], CoSSL [14], SAW,
SAW+LA, SAW+cRT [35], UDAL [36], L2AC [59], Adsh
[17], and DebiasPL [61] as baseline algorithms. Every
CISSL algorithm was combined with either FixMatch or
ReMixMatch. We initially conducted experiments using
baseline methods based on the official codes available on
GitHub. If we were able to reproduce the experimental re-
sults from the original article, we reported the results from
the original article. Otherwise, we reported the results from
our re-implementation. To clarify the source of experimen-
tal results, we will add the above details in Section 5.1 of
the main paper.

G. Comparison with DASO, DebiasPL, UDAL,
L2AC and ACR

DASO [50], DebiasPL [61], UDAL [36], L2AC [59], and
ACR [67] measured performance under different settings
compared to ours. To compare the classification perfor-
mance of these algorithms and the proposed algorithm, we
conducted experiments using the official codes of the algo-
rithms available on GitHub. In Tab. 7, Tab. 8, and Tab. 9,
classification performances of DASO and the proposed al-
gorithm are summarized. From the tables, we can observe
that LLA achieves better classification performance than
DASO. Additionally, from Tab. 10, Tab. 11 and Tab. 12,
we can observe that LLA achieves better performance than
DebiasPL, UDAL, L2AC and ACR.

H. Fine-grained experimental results of LLA
To demonstrate that the proposed algorithm achieves
higher classification performance for minority classes
than baseline algorithms, we conducted experiments us-
ing FixMatch/ReMixMatch, FixMatch/ReMixMatch+SAW
[35], FixMatch/ReMixMatch+SAW+cRT [27], and Fix-
Match/ReMixMatch+LLA on CIFAR-10-LT (γl = 100 and
γu = 1) and measured the classification accuracy for each
of the Many/Medium/Few groups. For CIFAR-10-LT, we
categorized the first three classes as the “many” group, the
subsequent four classes as the “medium” group, and the fi-
nal three classes as the “few” group. From Tab. 13, we
can observe that LLA achieves higher classification accu-
racy for the “few” group than the baseline algorithms.

I. Experimental results using FreeMatch as the
base SSL algorithm.

To validate the compatibility of LLA with a recent SSL al-
gorithm, we conducted experiments on CIFAR-10-LT under
γl = γu = 100 and γl = 100 & γu = 1 by using FreeMatch
[63] as the base SSL algorithm. We compared the classifi-
cation performance of FreeMatch+LLA against FreeMatch,
FreeMatch+SAW+cRT, and FreeMatch+CoSSL. The re-
sults in Tab. 14 indicate that FreeMatch+LLA significantly
outperforms the compared algorithms

J. t-SNE visualizations for training set of
CIFAR-10-LT

(a) Without EFCC (b) With EFCC

Figure 6. t-SNE visualizations of features from the CIFAR-10
training set, calculated using ReMixMatch+LLA without/ with
EFCC

In Fig. 6, we visualize the features of the two most dom-
inant classes (by yellow and red points) and two least dom-
inant classes (blue and green points) of the CIFAR-10-LT
(γl = 100 and γu = 1) training set using t-SNE [56]. EFCC
enhances the separability of minority class features.



CIFAR-10-LT (γ = γl = γu)

Algorithm γ = 50 γ = 100 γ = 150

FixMatch+DASO 81.8/ 81.0 75.7/ 74.0 72.0/ 68.9
FixMatch+DASO+LA 84.1/ 83.7 79.4/ 78.8 76.5/ 75.5
FixMatch+LLA (Ours) 88.1/87.8 84.8/84.5 82.2/81.5

ReMixMatch+DASO 82.5/ 81.9 76.0/ 73.9 70.8/ 66.5
ReMixMatch+DASO+LA 85.9/ 85.7 82.8/ 82.4 79.0/ 78.4
ReMixMatch+LLA (Ours) 89.0/ 88.8 85.8/ 85.6 83.2/ 82.9

Table 7. bACC/GM of LLA and DASO on CIFAR-10-LT under γ = γl = γu.

CIFAR-10-LT (γl = 100) STL-10-LT

Algorithm γu = 1 γu = 50 γu = 150 γl = 10 γl = 20

FixMatch+DASO 86.4/ 86.0 79.1/ 78.2 74.2/ 71.6 68.4/ 65.3 62.1/ 58.9
FixMatch+DASO+LA 86.2/ 85.8 81.7/ 81.2 78.0/ 77.0 68.9/ 66.3 66.0/ 64.6
FixMatch+LLA 88.6/ 88.4 86.0/ 85.7 83.2/ 82.7 82.6/ 81.9 79.5/ 78.6

ReMixMatch+DASO 89.6/ 89.3 79.6/ 77.8 72.3/ 69.0 75.1/ 73.6 66.8/ 61.8
ReMixMatch+DASO+LA 80.6/ 77.7 84.8/ 84.5 79.7/ 79.2 78.1/ 77.3 75.3/ 74.0
ReMixMatch+LLA 90.4/ 90.2 87.2/ 87.0 83.8/ 83.6 84.0/ 83.2 82.1/ 81.1

Table 8. bACC/GM of LLA and DASO on CIFAR-10-LT and STL-10-LT under γl ̸= γu.

CIFAR-100-LT (γ = γl = γu)

Algorithm γ = 20 γ = 50 γ = 100

FixMatch+DASO 45.8 39.2 33.9
FixMatch+DASO+LA 46.2 39.9 34.5
FixMatch+LLA 54.7 49.2 44.5

ReMixMatch+DASO 51.5 43.0 38.2
ReMixMatch+DASO+LA 52.8 45.5 40.3
ReMixMatch+LLA 57.0 50.9 45.7

Table 9. bACC of LLA and DASO on CIFAR-100-LT.

CIFAR-10-LT (γ = γl = γu)

Algorithm γ = 50 γ = 100 γ = 150

FixMatch+DebiasPL 85.9/ 85.3 80.6/ 79.8 76.1/ 74.4
FixMatch+UDAL 86.5/ 86.1 81.4/ 80.9 77.9/ 76.5
FixMatch+L2AC 87.4/ 87.0 82.1/ 81.5 77.6/ 75.8
FixMatch+ACR 86.2/ 85.9 81.8/ 81.4 79.7/ 78.5
FixMatch+LLA 88.1/ 87.8 84.8/ 84.5 82.2/ 81.5

Table 10. bACC/GM of LLA and compared algorithms on CIFAR-10-LT under γ = γl = γu.



CIFAR-10-LT (γl = 100) STL-10-LT

Algorithm γu = 1 γu = 50 γu = 150 γl = 10 γl = 20

FixMatch+L2AC 88.1/ 87.9 82.6/ 82.1 77.0/ 76.1 79.9/ 79.1 77.0/ 75.8
FixMatch+ACR 85.6/ 85.3 82.4/ 82.0 78.6/ 78.0 81.1/ 80.5 77.5/ 76.4
FixMatch+LLA 88.6/ 88.4 86.0/ 85.7 83.2/ 82.7 82.6/ 81.9 79.5/ 78.6

Table 11. bACC/GM of LLA and compared algorithms under γl ̸= γu.

CIFAR-100-LT (γ = γl = γu)

Algorithm γ = 20 γ = 50 γ = 100

FixMatch+DebiasPL 52.5 46.2 41.0
FixMatch+UDAL 53.6 48.0 43.7
FixMatch+L2AC 52.6 45.9 40.7
FixMatch+ACR 52.2 46.0 41.1
FixMatch+LLA 54.7 49.2 44.5

Table 12. bACC of LLA and compared algorithms on CIFAR-100-LT.

CIFAR-10-LT (γl = 100, γu = 1)

Algorithm Overall Many Medium Few

FixMatch 70.2 96.3 77.7 34.0
w/ SAW 81.2 95.6 82.9 64.5
w/ SAW+cRT 84.6 87.8 85.5 80.2
w/ LLA 88.6 94.9 87.7 83.4

ReMixMatch 65.4 96.6 70.8 27.0
w/ SAW 87.0 96.8 86.4 78.0
w/ SAW+cRT 88.8 94.5 87.8 84.4
w/ LLA 90.4 94.2 88.6 89.0

Table 13. Fine-grained classification performance on CIFAR-10-LT under γl = 100, and γu = 1.

CIFAR-10-LT

Algorithm γl = γu = 100 γl = 100, γu = 1

FreeMatch 75.4/72.9 74.2/69.5
w/ CoSSL 81.7/81.1 87.9/87.6
w/ SAW+cRT 82.8/82.3 86.4/86.2
w/ LLA 85.1/84.8 89.5/89.3

Table 14. Experimental results with using FreeMatch [63] as the base SSL algorithm.


