NuiScene: Exploring Efficient Generation of Unbounded Outdoor Scenes

Supplementary Material

it gl MY

e L
e BPSE S

Figure 1. Additional generation results for our vector set diffusion model trained on 13 scenes. We show zoomed-in aerial shots on the top
with street level views on the bottom respectively for the two scenes. The scenes shown here are of size 16 x 46.

A. NuiScene43 Dataset

We filter scenes from Objaverse to select 43 high quality
moderately to large sized scenes (A.1). To ensure a uni-
fied scale between scenes, we annotate scenes with scales
relative to each other, aligning them under a uniform scale
(A.2). Finally, we preprocess the raw Objaverse mesh files
for training by sampling point clouds, adjusting ground ge-
ometry, and converting them to occupancies (A.3). Further-
more, we describe the sampling maps used to sample quad
chunks from scenes (A.4) as well as some dataset statis-
tics (A.5). Please see our dataset page https://3dlg-
hcve.github.io/NuiScened3-Dataset for visu-
alizations of all 43 scenes in NuiScene43.

A.1. Filtering

We begin by filtering Objaverse [2] using multi-view embed-
dings from 12 object frames using DuoduoCLIP [5] . We
use cosine similarity to query embeddings using text and im-
ages to retrieve scenes, then refine selection through manual
labeling and neural network filtering trained on Duoduo-
CLIP embeddings, reducing 37k initial scenes to 2k. Since
manually processing all scenes for scale labeling and ground
alignment is impractical, we select 43 larger scenes for initial
experiments.

A.2. Scale Labeling

To establish a uniform scale across scenes, we first normalize
all scenes to [—1, 1]. We then randomly select one scene as
the anchor, assigning it a scale of 1. Each remaining scene is
compared with the anchor, and its scale is adjusted visually
to align elements such as trees or buildings from multiple
angles, to ensure a visually coherent relative size. Since these
scenes are artist-created, their proportions may prioritize
aesthetic appeal over real-world accuracy. As a result, there
is no definitive correct scale. Instead, we approximate a
visually consistent scaling and record the assigned scale for
each scene, with the anchor scene remaining fixed at scale 1.

A.3. Geometry Processing

Point Cloud and Occupancy. All scene meshes are first
converted into SDFs using the same method as Wang et al.
[7], re-implemented in Taichi [4] for faster conversion. The
scales obtained in A.2 are used to adjust the voxel grid reso-
lution for SDF conversion to enforce the unified scale across
scenes. We then convert to occupancy by thresholding SDF
values. Finally, multiple iterations of flood filling are applied
to fill in holes in the scene. Point clouds are sampled from
the meshes after applying the Marching Cubes algorithm to
the occupancy of each scene.

Ground Fixing. We observed that the filtered scenes had
various ground geometry, ranging from flat planes to thick
volumes. To deal with this, we identify the lowest ground
level in each scene and enforce a uniform ground thickness

Table 1. NuiScene43 statistics.

Category # Scenes # Sampleable Quad Chunks
Rural/Medieval 16 6.2M
Low Poly City 19 49M
Japanese Buildings 4 29M
Other 4 1.2M

of 5 voxels below this level in the occupancy grid, ensuring
consistency in ground geometry across scenes.

A.4. Chunk Sampling

To sample training chunks from scenes, we first compute
an alpha map from the top-down view. Next, we apply a
convolution with all one kernel weights over the entire scene
using a kernel size of (100, 100), the size of a quad chunk
along the x and z axis. The resulting convolution map is
then thresholded at a value of 100 x 100 to determine valid
sampling locations. This ensures that all sampled chunks
contain occupied regions, avoiding holes or boundary areas
in the scenes.

Next, we compute a depth variation map. For each pixel,
we calculate the mean depth within the kernel window and
subtract the pixel’s depth value, taking the absolute value
to obtain depth mean deviations. To avoid sampling overly
flat regions, we filter out sample locations where the depth
variation is below 2.5. An illustration of the sample maps is
provided in Figure 2.

Finally, we apply farthest point sampling (FPS) to select
quad chunks from all valid sampling locations. This helps
minimize excessive overlap between chunks while ensuring
maximum scene coverage for training.

A.5. NuiScene43 Statistics

We present statistics of NuiScene43 in Tab. 1, including the
number of scenes in each category and the total number of
quad chunks that can be sampled. The chunk count is derived
by summing the sampling map discussed earlier, following
depth variation thresholding. Note that these chunks may
overlap, as we consider all valid x and z coordinates.

B. Implementation Details

B.1. 4-scene Training

We add an additional 3 scenes along with the original single
scene for training the 4-scene model in the main paper. The
3 additional scenes are shown in Figure 3.

B.2. Raster Scan Order Generation

We show the algorithm of our raster scan order generation
during inference utilizing our diffusion model trained with 4
different configurations in Algorithm 1. The algorithm out-
lines how the 4 different masking configurations are used to

https://3dlg-hcvc.github.io/NuiScene43-Dataset
https://3dlg-hcvc.github.io/NuiScene43-Dataset

Sample Map

AR

Occupied (1) Empty (0)

10
0
Depth Mean Deivation
08 5
a0
-]
£
2
05
g a
20
02
10

00

Figure 2. Sample and depth mean deviation maps are calculated for sampling chunks from scenes.

‘ L

Figure 3. Three additional scenes used to train our 4-scene model. The top two sub-scenes are split from a large Objaverse scene for
occupancy calculation. All scenes have fixed ground geometries, and their meshes are extracted via marching cubes on the occupancy grid.

condition on existing chunks for continuous and unbounded
generation. In line 19 of the algorithm we denoise for 50
steps using the DDPM scheduler. After we obtain a large
grid of embeddings, the decoder is used to decode occupan-
ices followed by marching cubes to get the final mesh.

It can be observed that generation of the next row can
begin once a single quad chunk has been generated in the
current row. This allows for parallelization along the scene’s
anti-diagonal, greatly accelerating sampling for large scenes.

However, memory usage becomes inconsistent and varies
with scene size. For consistency and simplicity, we use
the sequential raster scan order (Algorithm 1) in the paper.
Please refer to our implementation for more details.

B.3. Details on Scene Texturing

SceneTex [1] offers three camera modes' for rendering im-
ages and texture optimization, i.e., Spherical Cameras, the

https://github.com/daveredrum/SceneTex

https://github.com/3dlg-hcvc/NuiScene
https://github.com/daveredrum/SceneTex

Algorithm 1 Raster Scan Order Scene Generation

Require: Number of rows I, number of columns J, trained diffusion model ¢

1: Initialize scene latent grid Z € RIX/*Vxe

2: fori =0to] —2do

3 for j =0toJ —2do

4 if = 0 and j = O then

5 M + {0,0,0,0}

6: Zeond < {0,0,0,0}

7 else if © = 0 then

8 M + {1,0,1,0}

9: Zeond < {Zi,5,0, Zi; 15,0}

10: else if 7 = 0 then

1: M «+ {1,1,0,0}

12: Zcond < {Zi,j7 Zi,j+17 0, 0}

13: else

14: M+ {1,1,1,0}

15: Zeond < {Zij, Zijy1,Ziy1,5,0}
16: end if

17: X7 ~ N(0,1)

18: C +— M®® Z.ng ®PE

19: {z0, 21, 22, 23} < Denoise(X1 @ C, €y)
20: Zi gy Zi i1, Ziv1,j, Lit1,5+1 < 20, 21, 22, 23
21: end for
22: end for

23: return Z

> Iterate row-wise
> Iterate column-wise
> First chunk (Full)

> First row (Left-Right)

> First column (Top-Down)

> All other cases (Diagonal)

> Sample Gaussian noise

> Conditioning input

> Denoise 2x2 quad chunk
> Write to scene latent grid

Blender Cameras and BlenderProc Cameras. For small in-
door scenes like those from 3DFront [3], spherical cameras
are sufficient to capture the fine-grained details of the scene
and produce high-quality textures. However, for large out-
door scenes, a predefined spherical camera trajectory often
fails to cover the entire scene comprehensively and misses
important scene details. We therefore choose the Blender
Cameras mode to manually keyframe the camera trajectory
for each scene. This enables a finer control over capturing
the scene details, leading to an improved texture.

More specifically, we first normalize each scene into a
spatial range of [—1, 1] centered at the world origin. Then,
we define a snake-scan-like camera trajectory to capture the
entire scene at a specified frame rate, as shown in Figure 4.
Each frame will be rendered by SceneTex and all rendered
images are sampled during training to optimize the scene-
level texture. Note that to enable faster optimization, we use
Blender’s Decimate Geometry and Merge By Distance with
a distance of 0.001m to compress the scene until its size is
smaller than 20MB. This might degrade the geometry for
large scenes, but it’s only for the texturing purpose. We en-
courage readers to focus on the untextured geometry details
of the generated scenes. Figure 5 shows more examples on
raw geometries and the textured counterparts.

Table 2. Additional quantitative comparison of reconstruction
across different VAE backbones for the single scene experiment.
Here h indicates that the predicted height was used for the occu-
pancy prediction and h the ground truth height.

Method OutputRes/S IOUt CD (h) | F-Score ()t CD (h)| F-Score (k)1

tiplane 3 x 642/6 0.940 0.064 0.831 0.064 0.831
P 3 x 128%/6 0.982 0.185 0.879 0.058 0.858
vecset - 0.989 0.055 0.864 0.055 0.863

C. Additional Results
C.1. Single Scene Results

Triplane 3 x 1282, Tab. 2 presents results for the Triplane
baseline with an output resolution of 3 x 1282, We see that
the IOU outperforms the lower-resolution triplane baseline
and beats the vecset model on F—Score(ﬁ). However, we
notice a large increase in CD(h). Upon inspecting chunks
with larger CD values, when predicted heights are larger
than the ground truth, the model produced floating artifacts.
This may be attributed to the higher resolution, which may
be more sensitive to spatial aliasing or quantization artifacts
during feature querying. Adjusting the scale factor to S' =
8.5 may be more appropriate for this resolution, but due to
the high training cost, we did not retrain the model. These
results highlight the sensitivity of spatially structured latents
to scene bounds and hyperparameters like S.

< 2m

200 frames

(a) An illustration of our choice for the camera trajectory, indicated by red arrows.

(b) Image rendered at position (1).

(c) Image rendered at position (2). (d) Image rendered at position (3).

(e) Image rendered at position (4).

Figure 4. An overview of our choice of the camera trajectory in Blender and the four images respectively rendered at position (1), (2), (3)
and (4). We adopt a snake-scan trajectory pattern allowing for a more comprehensive coverage of the entire scene. The long side of the
trajectory spans 2 meters at a fixed number of 200 frames, and the shorter side spans 0.5 meters for 50 frames. Depending on the shape of

the scene, the total number of frames ranges from 1.2k to 1.8k.

Table 3. Comparison of VAE training resources for vector set
vs triplane backbones with larger batch sizes. Training for all
experiments was run on 4 L40S GPUs, total batch size and memory
across 4 gpus are reported. The # Latents is the size of the latent
for the VAE backbone and Output Res indicates the triplane size
after deconvolution.

Method BS #Latents Output Res Time (hr) Mem. (GB)
triplan 192 3 x 42 3 x 322 18 166.0
PRIC 190 3 x 42 3 x 642 29.4 164.4
vecset 144 16 - 21.6 170.5

Larger Batch Size. We initially experimented with larger
batch sizes across all configurations, using 4 GPUs, as shown
in Tab. 3 to accelerate training. For the vecset model, this
reduced training time to 21.6 hours from 36.1 hours on

Table 4. Quantitative comparison of reconstruction across different
VAE backbones using larger batch sizes in Tab. 3. Here h indicates
that the predicted height was used for the occupancy prediction and
h the ground truth height.

Method OutputRes/S 10Ut CD (k)| FE-Score (k)1 CD (h)| F-Score (h) 1

trinlane 3 x 322/6 0.727 0.171 0.508 0.170 0.503
P 3 x 642/6 0.933 0.099 0.852 0.064 0.830
vecset - 0.962 0.072 0.890 0.057 0.858

2 GPUs (main paper configuration). However, it led to
overfitting, as seen in Tab. 4 which also affected height
prediction accuracy as demonstrated in Figure 6 where the
model under-predicted the height, leaving parts of the chunk
unreconstructed. In contrast, triplane backbones were less
affected by overfitting. We hypothesize this is due to their
spatial locality where query points retrieve features from

(b) Textured scene (1).

(f) Textured scene (3).

(e) Generated scene (3).

(g) Generated scene (4). (h) Textured scene (4).

Figure 5. Four examples (1) to (4) of generated scenes and the textured counterparts. (1) is textured using prompt “A beautiful town with
buildings, castles and trees”. (2)(3) are textured using prompt “A large city with buildings and surroundings”. (4) is textured using prompt

“A modern city with buildings and trees, clouds in the sky”.

h

Figure 6. We compare the reconstruction of the vector set model
with larger batch size (144) when using the predicted height of
the model and using the ground truth height A.

fixed triplane positions, whereas the vecset backbone allows
queries to aggregate from all feature vectors, offering greater
capacity but also more prune to overfitting. Nevertheless,
this shows the limit of the one scene training.

Evaluation Metrics. Following 3DShape2Vecset [8], we
report IOU, Chamfer Distance (CD), and F-Score for VAE re-
construction. However, we find that CD and F-Score can be
less reliable. When extracting surfaces via marching cubes,
a level set threshold must be selected, which can introduce
gaps relative to the ground truth due to the discrete grid
resolution. This issue can disproportionately affect chunks
of varying height, taller chunks may have fewer points per

area given the same number of points are sampled for each
chunk, leading to potentially higher CD and lower F-Score.
As a result, these metrics are not fully comparable across
settings like single-scene versus 4-scene training, due to
differences in chunk distributions. In our case, larger differ-
ences in reported values are more indicative, while smaller
variations may reflect noise due to the level set gap. Overall,
IOU is more reliable and comparable across different scene
configurations.

Level of Detail. In Figure 7, we visualize occupancy predic-
tions at different resolutions during inference with marching
cubes to generate different level of detail (LoD) for the tri-
plane and vector set models. 50 is the original chunk size
used for training along the = and z axis, with the y axis
scaled according to the height prediction. We find that halv-
ing the chunk size offers comparable details while reducing
memory usage for scenes. However, decreasing further to 13
leads to noticeable loss of details in the trees and buildings.
Additional Visualizations We show additional results for
our vecset diffusion model in Figure 8 and results for the
RePaint baseline in Figure 9.

C.2. 4-scene

For the 4-scene experiments in this section we follow the
same GPU configurations in the main paper, and increase the
number of sampled chunks across 4 scenes to 300K chunks.

Triplane

VecSet

Figure 7. Here we show the results of using different occupancy grid resolutions for prediction during inference for marching cubes. The
numbers on the bottom indicate the chunk size along the = and z axis. 50 is the original chunk size used for training.

Figure 8. Additional results for our vector set diffusion model trained on a single scene. The scenes shown here are of size 21 x 21.

Table 5. Quantitative comparison of reconstruction across different
VAE backbones on the 4 scene training. Here h indicates that the
predicted height was used for the occupancy prediction and h the
ground truth height.

Method OutputRes/S I0Uf CD (k)| F-Score ()1 CD(h)| F-Score ()1

triplane 3 x 64%/6 0.933 0.061 0.833 0.061 0.832
vecset - 0.989 0.053 0.869 0.053 0.868

The training and validation follow the same 95%-5% split.
For diffusion evaluation we sample 30K quad chunks from

Table 6. Comparison of triplane and vecset diffusion models for
generated quad-chunks on the 4 scene training. KPD scores are
multiplied 10°.

Method FPD] KPD|

triplane 0.868 2.142
vecset 0.581 1.104

the scenes and well as the diffusion models for evaluation.
Quantitative Results. We show the VAE reconstruction and

Figure 9. Additional RePaint results using our vector set diffusion model trained on a single scene. The scenes shown here are of size
16 x 16. We show results for resampling steps » = 5 and » = 10. Compared to our outpainting model, RePaint struggles with inter-chunk
coherence and sometimes collapses, producing broken chunks in larger scenes.

e’ i.

Figure 10. Additional results for our vector set diffusion model trained on 4 scenes. The scenes shown here are of size 21 x 21.

diffusion quality in Tab. 5 and Tab. 6, respectively. We can
see that for IOU the vector set model maintains its perfor-
mance, while the triplane slightly drops. With the vector
outperforming the triplane model across the board.

Additional Visualizations. We show additional results from
our vecset diffusion model trained on 4 scenes in Figure 10.

C.3. 13-scene

To further demonstrate our model’s potential for scaling up,
we sample 280K chunks from 13 scenes in NuiScene43
(sample configurations available here) and train using the
same settings as before.

Improving Reconstruction. Following the previous vector
set settings, the VAE model trained on 13 scenes see a drop
in IOU to 0.968, due to a larger variation of scenes compared

to the single or 4-scene scenarios. One naive way we can
increase the VAE’s performance is to increase the number
of feature vectors directly during training from V' = 16.
However, this would increase the memory usage and slow
diffusion training as shown in the triplane model. Instead,
inspired by the deconvolution layers for triplanes. We intro-
duce a pixel shuffle [6]-like layer for upsampling the number
of vector sets followed by additional self attention layers.
This increases the capacity of the model without increasing
the latent size. Specifically, we add an additional projection
layer that increases the number of channels and reshape from
the channels dimension to the vector tokens. We upsample
to 512 vector sets and add 3 self-attention layers before the
cross attention layer for querying coordinates. This improves
the IOU to 0.983.

https://github.com/3dlg-hcvc/NuiScene43-Dataset

Figure 11. Additional results for our vector set diffusion model trained on 13 scenes. The scenes shown here are of size 21 x 21.

444

GT

VecSet + PS

VecSet

Figure 12. We compare chunk reconstructions between the original
vector set model and the upsampled version (VecSet + PS). The up-
sampling model recovers finer details that are blurry in the original
(see orange boxes).

In Figure 12, we show a qualitative comparison between

models. The original vector set model already reconstructs
scenes quite well, despite the increase in the number of
training scenes. The added improvements further enhance
the reconstruction of finer details.
Additional Visualizations. We show square scenes gener-
ated by the diffusion model trained with the improved model
with pixel shuffle in Figure 11. And larger scenes with aerial
and street view zoom-ins in Figure 1. It can be seen that this
model can generate a larger variety of different scenes while
maintaining good fidelity.

References

[1] Dave Zhenyu Chen, Haoxuan Li, Hsin-Ying Lee, Sergey
Tulyakov, and Matthias Nieiner. SceneTex: High-quality
texture synthesis for indoor scenes via diffusion priors. In
Proceedings of the IEEE/CVF Conference on Computer Vision

(3]

(]

[6

—_

(7]

(8]

and Pattern Recognition, pages 21081-21091, 2024. 3

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,
Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana Ehsani,
Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe
of annotated 3D objects. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13142-13153, 2023. 2

Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming
Wang, Cao Li, Qixun Zeng, Chengyue Sun, Rongfei Jia, Bin-
giang Zhao, et al. 3D-front: 3D furnished rooms with layouts
and semantics. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 10933-10942, 2021. 4
Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-
Kelley, and Frédo Durand. Taichi: a language for high-
performance computation on spatially sparse data structures.
ACM Transactions on Graphics (TOG), 38(6):201, 2019. 2
Han-Hung Lee, Yiming Zhang, and Angel X Chang. Duoduo
CLIP: Efficient 3D understanding with multi-view images.
arXiv preprint arXiv:2406.11579,2024. 2

‘Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz,
Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1874-1883, 2016. 8

Peng-Shuai Wang, Yang Liu, and Xin Tong. Dual octree graph
networks for learning adaptive volumetric shape representa-
tions. ACM Transactions on Graphics (TOG), 41(4):1-15,
2022. 2

Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter
Wonka. 3DShape2VecSet: A 3D shape representation for neu-
ral fields and generative diffusion models. ACM Transactions
on Graphics (TOG), 42(4):1-16, 2023. 6

	NuiScene43 Dataset
	Filtering
	Scale Labeling
	Geometry Processing
	Chunk Sampling
	NuiScene43 Statistics

	Implementation Details
	4-scene Training
	Raster Scan Order Generation
	Details on Scene Texturing

	Additional Results
	Single Scene Results
	4-scene
	13-scene

