PASTA: Part-Aware Sketch-to-3D Shape Generation with Text-Aligned Prior

Supplementary Material

Overview

The supplementary material provides a detailed description
of our proposed method, PASTA, for sketch-to-3D shape
generation. It begins with the experimental setup in Sec-
tion 1, which outlines the data sets [3, 14, 21, 26] used for
training and evaluation, the details of the implementation,
and the evaluation metrics used to assess the quality of the
3D shapes generated. In Section 2, we elaborate details on
the Text-Visual Transformer Decoder, which plays a crucial
role in integrating text and visual information to enhance
the semantic understanding of input hand-drawn sketches.
In Section 3, we analyze Integrated Structure-Graph Net-
work (ISG-Net), a graph-based refinement module designed
to improve the structural coherence of the generated 3D
models. Finally, in Section 4, we present more qualitative
results, demonstrating the effectiveness of PASTA in gen-
erating high-quality 3D shapes that faithfully preserve the
intended design elements from sketches.

1. Experimental Setup
1.1. Dataset

To evaluate the effectiveness of our proposed method, we
utilize multiple datasets [3, 14, 21, 26] representing diverse
sketching styles and their corresponding 3D shapes. Specif-
ically, the datasets used in this work include CLIPasso [21]
and non-photo-realistic renderings [3], both of which pro-
vide diverse stylistic representations of objects. CLIPasso
generates abstract, highly simplified depictions, while non-
photo-realistic renderings produce more realistic sketches
compared to CLIPasso. For evaluation, we used the
AmateurSketch-3D [14] and ProSketch-3D [26] datasets.
AmateurSketch-3D consists of freehand sketches drawn by
non-experts, often exhibiting variability in proportions and
details, whereas ProSketch-3D comprises highly detailed,
expert-drawn sketches that adhere closely to object struc-
tures. Each dataset contributes a distinct perspective on ob-
ject depiction, spanning a spectrum from abstract simplifi-
cations to highly refined artistic renderings. Fig. | presents
sample sketches from these datasets [3, 14, 21, 26], high-
lighting differences in abstraction level, detail, and style of
chair sketches.

In addition to these datasets [3, 21], we convert real-
istic images using ControlNet [24] to further analyze our
approach on real-world photo based 3D shape generation.
Specifically, we apply ControlNet to sketches from CLI-
Passo and non-photo-realistic renderings, producing en-
hanced versions that preserve the original structural essence
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Figure 1. Sample images from the datasets used in our ex-
periments, including CLIPasso [21], non-photo-realistic render-
ings [3], AmateurSketch-3D [14], and ProSketch-3D [26]. These
datasets capture a range of sketching styles, from highly abstract
representations to detailed, expert-drawn sketches.

of the sketches while incorporating greater realism. Us-
ing ControlNet to guide image generation with fine-grained
control, we ensure that the generated results retain the fun-
damental characteristics of the input sketches while resem-
bling realistic RGB images. This allows us to bridge the
gap between abstract grayscale representations and photo-
realistic RGB images, offering a richer set of inputs for 3D
generation. The generated results are displayed in Fig. 2,
demonstrating how ControlNet enhances the visual fidelity
of sketches while maintaining their structural shape through
examples in the realistic RGB images.

1.2. Implementation Details

Training Configuration. For the training and evaluation
of our model, we adopt a carefully designed experimen-
tal setup to ensure robust performance and fair compar-
isons with existing methods. Our model is trained on a
single RTX 3090 GPU for approximately 38 hours for the
chair category. The training process follows a batch size
of 16 and employs an initial learning rate of 10~%, which
is dynamically adjusted using the OneCycle learning rate
scheduler [18] to facilitate stable convergence. This sched-
uler gradually increases the learning rate in the early stages
of training before decaying it towards the end, preventing
premature convergence and improving generalization. The
model is optimized using the Adam optimizer, and we train
for 650 epochs, ensuring sufficient iterations for conver-
gence while mitigating the risk of overfitting.
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Figure 2. Illustration of sketches processed using ControlNet [24].
The transformed sketches retain the structural essence of the orig-
inals while incorporating enhanced realism.

Architectural Specifications. In addition to these experi-
mental settings, we provide detailed specifications regard-
ing the architectural components of PASTA. We set the
number of queries and Gaussian mixture models to N = 16.
Within the PartGCN module, the number of graph cluster-
ing groups is set to K = 4, ensuring effective part-wise fea-
ture aggregation. The overall model architecture is designed
with two layers in the graph-convolution network (GCN),
allowing for a balance between expressiveness and compu-
tational efficiency. As described in Equation (9) of the main
paper, the weighting factor o in IndivGCN and PartGCN
is set to 0.8 based on experimental results. Furthermore,
the loss weights for different components, including Aqjign,
Aindivs and Apart, are set to 1.0, 0.1, and 0.1, respectively, fol-
lowing the formulation in Equation (11) of the main paper,
ensuring optimal performance in various sketch styles and
object categories.

1.3. Evaluation Metrics

For evaluation, we employ three metrics to assess the qual-
ity of the 3D shapes generated. Chamfer distance (CD)
quantifies the accuracy of the point-wise reconstruction
by measuring the discrepancy between the predicted point
clouds set P and the ground-truth point clouds set G:
1 1
CD(P,G) = 1 > min Ip=gl3-+ 127 >_ minlp-gll3.
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The Earth Mover’s Distance (EMD) quantifies structural
differences by determining the minimum cost required to
transform one point cloud into another, based on an opti-
mal correspondence w € II(P, G). Here, II(P, G) € R™*™
consists of elements in the range between 0 and 1, such that
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Figure 3. Comparison of two architectures for the Text-Visual
Transformer Decoder: (a) sequential cross-attention and (b) par-
allel cross-attention mechanisms.

AmateurSketch-3D ProSketch-3D
Methods cb, EMD| FID| CDJ] EMDJ| FID|]

(a) Sequential  0.090  0.071 1439 0.055 0.049 112.2
(b) Parallel 0.095 0.074 1502 0.071 0.061  120.7

Table 1. Quantitative comparison of the two Text-Visual Trans-
former Decoder architectures. (a) Sequential method consistently
outperforms (b) parallel method across multiple evaluation met-
rics, highlighting the benefits of first enriching visual embeddings
before merging them with textual information.

the sum of each row and each column equals one.
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For the calculation of CD and EMD, 2,048 points are sam-
pled from both the ground truth mesh and the generated
mesh. Finally, the Fréchet Inception Distance (FID) [6] is
used to assess the realism of the generated shapes by com-
paring the feature distributions of the rendered 3D models
with those of real-world reference data:
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To compute the FID score, we first sample 20 different
views and render both the ground truth shape S the gen-
erated shape S’. The features are then extracted from
these images using the Inception-V3 network [19], which
maps each image to a probability distribution across 1,000
classes. From this distribution, we compute the mean y; and
the covariance matrix YJ; for each image ¢. These statistics
are then used to calculate the final FID score. To improve
the accuracy of the calculation, we employ the shading-
image-based FID metric.

By systematically integrating these experimental config-
urations, our approach is designed to generate high-fidelity
3D shape generations while maintaining structural consis-
tency across different types of input sketches. The follow-
ing sections further analyze our results, highlighting details
in qualitative and quantitative improvements.



Input Sketch Part Type Single Sentence Verbose

“The chair in the image is a
modern, minimalist design with
a simple and elegant
appearance. It features a
single, curved backrest and a
single, curved seat. The chair
has a single leg, which adds to
its sleek...”

“The chair has a
curved backrest, a
flat seat, four legs,
and no armrests.”

“Backrest,
seat, legs”

“The chair in the image is a
simple, modern design with a
backrest and a seat. The
backrest is designed to provide
support and comfort for the
user's back, while the seat is
designed to provide a
comfortable and ergonomic...”

“The chair has a
curved backrest
and seat, four legs,
and armrests.”

“Backrest,
Loy T seat, legs,
armrests”

Figure 4. Examples of different text description styles used in the
VLM [12]. The three types include Part Type, Single Sentence,
and Verbose descriptions.

AmateurSketch-3D ProSketch-3D
Methods Cb) EMD| FID| CDJ| EMD/| FID/]

CLIP [15] 0.101  0.080 152.1 0.066  0.053 117.7
BLIP2 T5 [11] 0.095 0.073 147.4  0.061  0.051 115.6
LLaVa-13B [12] 0.091 0.071 1443 0.054 0.050 113.9

LLaVa-7B [12]  0.090 0.071 1439 0.055 0.049 112.2

Table 2. Performance comparison of different VLMs [11, 12, 15]
in our framework. LLaVa-7B [12] achieves the best balance be-
tween CD, EMD, and FID that making it the most suitable choice
for enhancing text-guided 3D shape generation.

2. Details of Text-Visual Transformer Decoder

The Text-Visual Transformer Decoder is a key contribution
in our framework, responsible for integrating text priors
with visual features to enhance 3D shape generation from
sketches. In this section, we present the architectural de-
sign of the decoder, analyze the impact of different vision-
language models (VLMs) [11, 12, 15], and evaluate the role
of input text descriptions in guiding the generation process.

2.1. Architectural Design of Text-Visual Trans-
former Decoder

Fig. 3 presents two different architectures to integrate text
and visual condition within our Text-Visual Transformer
Decoder. In method (a), the visual embedding is first pro-
cessed through a cross-attention mechanism before being
fused with text embeddings via a second cross-attention
operation. In contrast, method (b) applies cross-attention
separately to both visual and text embeddings before merg-
ing them later in the process. Tab. | compares the perfor-
mance of these two approaches, showing that method (a)
consistently outperforms method (b). The key advantage
of method (a) is that the initial cross-attention incorporates
visual condition into the query, allowing the subsequent
text cross-attention to extract more relevant information.
Since the text embeddings extracted from the VLM [12] are
aligned with the visual latent space, integrating the sketch
embedding into the query first aids in the consolidation of
corresponding part-specific information. In contrast, as in

method (b), applying cross-attention between a query de-
void of visual cues and the text embeddings may lead to
unintended information exchange. This results in improved
alignment between sketches and their corresponding 3D
shapes, leading us to adopt method (a) in our framework.

2.2. Impact of Vision-Language Models

To assess the influence of different VLMs [11, 12, 15] on
our framework, we conduct a comparative analysis using
various VLMs, as summarized in Tab. 2. When employing
CLIP [16], only marginal performance improvements are
observed, likely due to its categorical training and align-
ment, which are specifically optimized for classification
tasks. In contrast, models that excel in image captioning
and visual question answering (VQA) yield more substan-
tial enhancements. Notably, BLIP2 [11], lacking explicit
fine-tuning on instruction data, frequently produces subop-
timal outcomes compared to LLaVA-7B/13B. For instance,
it sometimes generates responses that are irrelevant to the
user’s instructions (e.g., “a chair is a piece of furniture with
a seat and backrest.”) or omits critical components, such as
the number of legs and the presence of armrests (e.g., “a
chair with a backrest and seat that are shaped in the form
of a horseshoe.”). In contrast, the LLaVA-7B model con-
sistently provides responses that comprehensively incorpo-
rate the necessary elements. While LLaVA-13B delivers de-
scriptions similar to those of the 7B model, its performance
is marginally inferior. Considering model size, computa-
tional cost, and overall performance balance, we therefore
adopt the 7B model in this work.

Effect of Description Types on Text Embeddings. The
quality and structure of text descriptions play a valuable
role in guiding the 3D generation process. Fig. 4 provides
examples of different description styles, corresponding to
part type based descriptions, single sentence descriptions,
and verbose descriptions. For instance, in the Verbose, the
description of such discrepancies arises due to overempha-
sis on stylistic attributes like “modern”, “minimalist”, and
“elegant” which can mislead the 3D generation model. On
the other hand, Part Type, such as “Backrest, seat, legs,
armrests,” provides a fundamental structural understanding.
However, they lack details about the shape and number of
components, which are crucial for precise shape generation.
In contrast, Single Sentence strikes a balance between clar-
ity and informativeness. They specify the number and form
of object components while avoiding unnecessary complex-
ity. Our analysis, supported by Table 5 in the main paper,
reveals that verbose descriptions often introduce hallucina-
tions and excessive modifiers leading to inconsistencies in
shape generation. As a result, our framework adopts single
sentence descriptions to maximize the accuracy and relia-
bility of text-guided 3D shape generation, by maintaining
specificity while avoiding hallucinations.



Prompt: “Describe the shape of wings and tail, the absence or the number of engines, and the

presence of landing gear in a sentence.”

“The wings are
triangular, the tail
is pointed, and the
airplane has two
engines with no
visible landing
gear.”

“The wings and tail
of the airplane are
drawn to resemble
a jet, with no
visible engines or
landing gear.”

Prompt: “Describe the shape and number of lamp heads, facing of head, as well as the shape of
the lamp base and stem in a sentence.”

“The lamp has a
round head and a
long stem, and it is
hanging from a
wire.”

“The lamp has a
triangular head
and a thin stem,
and it is facing
upwards.”

Figure 5. This figure presents prompts used for airplane and
lamp sketches, along with the text descriptions produced by the
VLM [12]. The generated descriptions capture the key structural
features of each sketch, providing valuable semantic information.

Text-Based Descriptions and Generated Outputs. We
extend our analysis beyond the chair category to include air-
plane and lamp, as shown in Fig. 5. The results demonstrate
that VLM [12] effectively captures fine-grained structural
details across different object types, showcasing its abil-
ity to perform effectively across diverse shape categories.
By utilizing text-aligned priors, PASTA successfully dis-
tinguishes between distinct design elements, such as the
wing and fuselage in airplanes or the lamp head and base
in lamps. These findings highlight the robustness of text-
visual integration strategy, confirming its effectiveness in
enhancing the semantic understanding of sketches across
multiple categories.

3. Analysis of ISG-Net

The Integrated Structure-Graph Network (ISG-Net) is de-
signed to refine the structural consistency of 3D shape
generation by incorporating graph-based reasoning. The
network consists of two key modules: IndivGCN, which
focuses on fine-grained feature extraction, and PartGCN,
which aggregates and refines part-level information. In this
section, we first explore related work on Graph Neural Net-
works (GNNs) and then analyze the effects of the clustering
method used in PartGCN, the impact of the number of clus-
ters K, and the balance between IndivGCN and PartGCN
using the parameter o.

3.1. Releated Work on Graph Neural Networks

Graph neural networks (GNNs) [17] model complex struc-
tured data as nodes and edges, thus effectively learn-
ing relationships within the data. Early work focused
on message-passing mechanisms to aggregate informa-
tion among nodes, and later convolutional neural networks
(CNNs) were generalized to graph-structured data, lead-
ing to the development of graph convolutional networks
(GCNs) that facilitate information exchange between neigh-
boring nodes. GCNs can be classified into spatial-based
methods [2, 13], which apply trainable filters directly to
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Figure 6. Dendrogram [25] and visualization of Gaussians with the
mesh illustrating the clustering process in PartGCN, where N =
16 nodes are grouped into K = 4 clusters to enhance part-wise
feature aggregation.
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connected nodes, and spectral-based methods [5, 9], which
define locality through spectral analysis. Such graph-based
neural networks have been applied not only to social net-
works [4] but also to various computer vision tasks [1, 7, 8,
10, 20, 22, 23]. In this work, we apply GCNs to Gaussian
mixture models (GMMs) for 3D shape representation. We
define the graph structure by producing an adjacency ma-
trix based on the distances between Gaussians in 3D space,
thereby enabling information exchange between adjacent
nodes for more structurally accurate shape generation and
reconstruction. Furthermore, by grouping similar nodes and
performing additional graph operations, we achieve robust
structural learning.

3.2. Clustering Method for PartGCN

To perform PartGCN operations, N queries and Gaussians
must be assigned to K subsets. To achieve this, we employ a
hierarchical clustering technique [25] to partition the parts.
This clustering is applied to both the pseudo-ground truth
and the predicted queries. For pseudo-ground truth, cluster-
ing is performed based on A; € RV*¥ to form K groups,
and the coordinates of the Gaussians within each group are
aggregated using average pooling to obtain a representa-
tive coordinate. The distances between these coordinates
are then computed to produce the final pseudo-ground truth
adjacency matrix A p € RE*K | Simultaneously, predicted
queries are pooled for each group to obtain Qp € R¥*4,
which is processed through fp. and subsequently subjected
to an dot product operation to produce the predicted adja-
cency matrix Ap € REXK  Ag illustrated in Fig. 6, the
clustering process is depicted through a dendrogram [25],
where N nodes are grouped into K clusters. In particular, it
flexibly groups dynamically varying Gaussians (e.g., those
located near the legs versus those near the armrests). This
method enables PartGCN to accurately identify and select
relevant structural parts, ensuring that the network focuses
efficiently on the details of the part level while maintaining
overall structural integrity.



AmateurSketch-3D
Methods CDJ] EMD| FID|

K=2 0.098  0.081 160.2
K=4 0.090 0.071 1439
K=6 0.093  0.076  149.0
K=8 0.094 0.078 156.4

Table 3. Performance comparison for different cluster numbers K.
Too few clusters weaken structural representation, while too many
reduce synergy with IndivGCN.

3.3. Effect of Cluster Number K

The experimental results on varying the number of clusters
K reveal important insights into the impact of cluster selec-
tion on the performance of our model. When K is too small,
there is insufficient granularity in the clustering process,
causing PartGCN to lose critical structural relationships. As
a result, the overall structural integrity of the output suffers
and the model does not adequately represent the coherence
of the object. On the other hand, when K is excessively
large, the model faces a different challenge. Although more
clusters may provide a higher resolution of detail, it also
introduces redundancy and excessive complexity. In this
case, PartGCN becomes overloaded with unnecessary in-
formation, leading to a loss of synergy with IndivGCN. This
imbalance occurs because excessive detail hampers the ef-
fective integration of local features, causing IndivGCN and
PartGCN to work against each other rather than comple-
ment each other. The model’s performance, therefore, suf-
fers from a lack of coherence between the fine-grained de-
tails and the global structure. As shown in Tab. 3, K=4
ensures that both components work harmoniously, leading
to the generation of high-quality 3D shapes without sacrific-
ing performance or structural integrity. This process allows
PartGCN to contribute effectively to the overall structure
while maintaining the balance with IndivGCN.

3.4. Influence of « in IndivGCN and PartGCN

In our experiments, we use the parameter « as a weighting
coefficient for the outputs of IndivGCN and PartGCN, as
described in Equation (9) of the main paper. Specifically, a
scales the output of IndivGCN, which captures fine-grained
local features, while the complement (1 — «) scales the out-
put of PartGCN, which encodes global structural elements.
The experimental results, shown in Tab. 4, demonstrate that
the best performance is achieved when « is set to 0.8, strik-
ing the optimal synergy between these two components.
In this configuration, IndivGCN is weighted more heavily,
which allows it to preserve fine-grained local details that are
crucial for the accurate representation of intricate features.
At the same time, PartGCN is still capable of effectively
contributing to the integrity of the global structure by en-
coding broader spatial relationships and consistency at the

AmateurSketch-3D
Methods CDJ] EMD| FID|

a=00 0.09 0.084 157.0
a=02 009 0.081 1554
a=04 0.092 0.077 151.8
a=06 0.094 0077 152.1
a=08 0.090 0.071 1439
a=10 0092 0.071 1453

Table 4. Effect of o on IndivGCN and PartGCN balance. The
best performance is achieved at o = 0.8, optimizing detail and
structure integration.

part level, as it is scaled by (1 — «). This balance is key
to ISG-Net success, while IndivGCN focuses on refining
local geometry and intricate details, PartGCN provides es-
sential structural support, preventing shape distortions, and
preserving overall coherence. Consequently, this leads to
the best overall performance of ISG-Net, enabling it to gen-
erate 3D shapes that are rich in fine-grained detail and struc-
turally sound, preserving oversimplified sketches.

4. Qualitative Results

Additional qualitative results across different object cate-
gories, including chair, airplane, and lamp, are provided to
further support our experimental findings. For chairs (Fig.7,
8), our model preserves key structures such as leg details,
backrest curvature, and armrests, even in abstract sketches.
For airplanes (Fig.9), PASTA generates coherent compo-
nents like wings, fuselage, engines, and tail. For lamps
(also Fig. 9), it captures fine details such as frame struc-
tures, lampshades, and support bases. These results high-
light strong generalization and ability to handle diverse and
complex shapes with high structural fidelity of PASTA. To
further validate these qualitative observations through hu-
man perception, we conducted a user study. We randomly
selected 50 objects (30 chairs, 10 airplanes, and 10 lamps)
and chose 5 examples for editing from our entire set of out-
puts. Then, we recruited 100 participants via Amazon Me-
chanical Turk (AMT) and presented them with two types
of rendered-image-based questions: (i) a preference com-
parison between PASTA and SENS based on performance,
and (ii) a visual quality rating using a 7-point Likert scale.
The results show in Tab. 5, across all categories and editing
cases, our method significantly outperforms SENS within a
95% confidence interval, further reinforcing the effective-
ness and visual quality of our approach.

Chair Airplane Lamp Editing
Method ~ Prefer (%)  Likert? Prefer (%)  Likert1 Prefer(%)  Likert? Prefer (%)  Likert
SENS  7.63:1.11 4704009 18.70+£124 5.16£0.23 14.00+£1.83 4294024 14.60+384 4.04+0.26

PASTA  92.37+1.11 5.95+0.02 81.30+1.24 5.59+0.20 86.00+1.83 5.96+0.16 85.40+3.84 6.17+0.17

Table 5. User study results: preference (%) and average Likert
ratings for each category. Higher is better.
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Figure 7. Qualitative results for chair reconstructions, demonstrating the preservation of key structural elements such as leg orientation,
backrest curvature, and armrest presence.
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Figure 8. Qualitative results for chair reconstructions, demonstrating the preservation of key structural elements such as leg orientation,
backrest curvature, and armrest presence.
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Figure 9. Additional qualitative results for airplanes and lamps, showcasing accurate reconstruction of aircraft components and intricate
lamp structures.
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