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In this appendix, we first discuss the limitations of our work
and potential directions for future work (Sec. A). We then
analyze the failure cases of two dense reconstruction-based
baselines—SpatialPIN* [12] and ViewCrafter [18]—in al-
locentric reasoning scenarios (Sec. B). We describe the im-
plementation details of our APC framework (Sec. C) and
provide details on the evaluation setups (Sec. D). Finally,
we provide the text prompts used in each stage of our
method (Sec. E).

A. Limitations and Future Work

Our APC framework empowers VLMs with perspective-
aware spatial reasoning, but its use of multiple vision foun-
dation models [7, 10, 16] introduces additional memory us-
age compared with running the VLM alone. In our experi-
ments, we ran inference on two NVIDIA RTX 3090 GPUs
each with 24GB VRAM.

Moreover, the robustness of the scene abstraction stage
depends on the accuracy its detection, segmentation, and
orientation modules. To quantify each module’s impact, we
conducted an ablation study by substituting its predictions
with the oracle ground truth. The left-hand table in Fig. A.1
shows the ablated accuracy on the left/right split of COM-
FORT++, while the right-hand figures depict representative
failure cases. Injecting oracle information consistently im-
proves performance, indicating that APC’s accuracy is in-
deed influenced by each module’s robustness, yet does not
work as a critical bottleneck.

Detection Orientation

Accuracy
APC-Vis 89.67
+ det./seg./depth 91.67
+ ori. 96.67
+ det./seg./depth/ori. 97.33

Figure A.1. Ablation. Accuracy of APC with oracle values (left),
and failure cases of the vision modules (right).

While in this work we introduced a minimal yet effective
form of 3D abstraction for perspective change in VLMs,

exploring richer scene abstractions from images could offer
an promising direction for future research—such as the use
of 3D bounding boxes [1, 14, 17] and coarse, semantic 3D
scene reconstructions [2, 3, 15].

B. Analysis on Dense Reconstruction Baselines

In this section, we further discuss the dense reconstruction-
based baselines introduced in Sec. 4.1. In contrast to APC’s
abstraction-based approach, another intuitive approach for
perspective-aware spatial reasoning is to perform a dense
3D reconstruction of the scene and then render a novel view
from the target perspective. This new view can then be pro-
vided to the VLM instead of the visual prompt used in Sec.
3.3. We explore two such approaches that involve dense
3D reconstruction process: (1) a modified version of Spa-
tialPIN [12], which directly lifts objects from the image
into meshes and renders them from the target view, and (2)
ViewCrafter [18], which synthesizes novel views by using
an intermediate point cloud reconstruction. As the origi-
nal SpatialPIN [12] does not include a rendering phase for
novel target perspectives, we refer to our extended pipeline
as SpatialPIN*. For the inference of SpatialPIN*, we used
One-2-3-45 [8] in contrast to One-2-3-45++ [9] in the orig-
inal paper due to the limited access of the APL

Method SpatialPIN* [12]  ViewCrafter [I8]  APC (Ours)
Time (s) 336.21 260.57 17.47
Table B.1. Inference Time Comparison. Both dense

reconstruction-based baselines [12, 18] require over 14 times the
inference time of our APC to answer a single question.

While a dense reconstruction-based approach may appear
to be an obvious alternative to our abstraction-based frame-
work, our experiments show that constructing an accurate
and descriptive view of the target perspective is challenging
and expensive. As illustrated in Fig. A.2, the synthesized
novel views from both SpatialPIN* (row 1) and ViewCrafter
(row 2) are often excessively noisy and fail to preserve the
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Figure A.2. Dense Reconstruction Baseline Examples. Novel views synthesized by SpatialPIN* [12] and ViewCerafter [ 18] both display
noisy and inaccurate objects and scene structures lacking the original context of the input image, thereby leading to low accuracy when

VLMs are fed the images as a visual input for spatial reasoning.

context of the input image. Consequently, providing these
reconstructed views to the VLM for spatial reasoning results
in lower accuracy as previously shown in Tab. 1. In addi-
tion, both methods incur notably longer inference times due
to the dense 3D reconstruction steps, as shown in Tab. B.1.
In contrast, as in our APC, constructing an minimal abstrac-
tion of the scene with precise mappings between the original
objects and their abstractions not only yields more accurate
reasoning but also substantially reduces inference time.

C. Implementation Details

In this section, we provide the implementation details of our
APC framework in Sec. 3. As the backbone VLM, we used
Qwen2.5—VL—7B—InstructR

C.1. Scene Abstraction

Detection Refinement with VLM. While Ground-
ingDINO [10] excels in object detection, it often struggles
when the input text prompt is complex. We add a simple
refinement stage utilizing the VLM for improved detection
accuracy. For each object description ¢; we keep Ground-
ingDINO’s predicted candidates whose confidence exceeds
a threshold s, then select the top k& candidates. The corre-
sponding image crops are laid out in a grid, and we query
the VLM to select the crop that best matched ;. We set
s = 0.15 and k = 5. Fig. C.1 illustrates a case in which the
initial GroundingDINO output is incorrect but is corrected
by this refinement step.

Ihttps://huggingface . co/Qwen/Qwen2 .5-VL- 7B~
Instruct

Detection Refinement Template Image

Input Image
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“Select the image that best fits the description: ‘man in white shirt’.
Please return its index.”

Figure C.1. Detection Refinement Example. Starting with can-
didate detections from GroundingDINO [10], we select the top k&
predictions and present them as a grid of cropped images (right).
We then query the VLM to return the index that best aligns with the
input text prompt. Red indicates GroundingDINO’s initial choice
and green indicates the refined choice.

Filtering Outliers. To obtain the 3D position of each ob-
ject abstraction O; € Sg, we unproject the segmented pix-
els using the predicted depth map. To handle outliers caused
by background pixels being included in the segmentation
masks, we filter out the points whose depth values fall out-
side the range [0.9d;,1.1d;], where d; is the mode depth
within the mask. We then assign the coordinate-wise me-
dian of the remaining points in the remaining points as the
3D position ¢; of object O;.

C.2. Egocentric Rephrasing

Recall that our APC converts an allocentric question (Q—
originally stated with respect to a reference viewpoint A—
into an egocentric one posed from A itself. To ensure
compatibility with the perspective prompts introduced in
Sec. 3.3, we remove the explicit perspective descriptions
from (). In practice, we query the VLM to rewrite (), ex-
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cluding the phrases that mention a reference perspective. In
turn we obtain a perspective-agnostic reformulation of the
task, which is then used in each type of perspective prompt.

C.3. Visual Prompt Rendering.

To render a visual prompt from the transformed scene ab-
straction S4 = {O}}}_, as shown in Fig. 5, we use the
Trimesh renderer [4]. Note that S, is defined in the coor-
dinate system of the reference perspective A. Each object
O} is converted to an equal-sized cube with distinct colors,
and the visual prompt is obtained by rendering the scene
accordingly. Given the camera in S 4 faces in the positive
z-direction, only the objects with z > 0 appear in the visual
prompt. Objects with z < (0 are considered to be out of
view (i.e. not visible) from perspective A.

Normalization. To prevent cubes from appearing too
small or large in the visual prompt, we normalize the co-
ordinates of S 4, ensuring z values lie within a predefined
range [Zmin, Zmax)- Likewise, we scale the x,y coordinates
into a fixed range [—d*, d*] to keep objects within the view
frustum.

Camera Translation. By default, we place the camera at
reference viewer’s position—the origin of S4. As an ex-
ception, for the left/right task in 3DSRBench [13], we shift
the camera backward along the z-axis to ensure all objects
in the scene appear in the visual prompt. This adjustment
is applied to match the benchmark’s setup, where an ob-
ject that lies behind and to the right of a reference viewer
is still treated as being on the right side from that viewer’s
perspective.

D. Evaluation Details

In this section, we provide further details on our evalua-
tion setup in Sec. 4. Each VLM response is scored with a
two-step process that combines exact matching and LLM-
assisted evaluation. We first perform exact matching: if the
response consists solely of the correct option index or the
exact answer phrase, we label it as correct. Otherwise, we
pass the entire response to an LLM along with the answer
to determine its correctness. For this, we used the judgment
prompt template from VLMEvalKit [6].

Following 3DSRBench [13], we employ Circu-
larEval [11], which takes into account VLM’s response
consistency by permuting the answer options for each
image-question pair. The VLM is considered to be
correct for a question @ only if it selects the correct
across all permutations. CircularEval is applied for both
COMFORT++ [19] and 3DSRBench [13].

To construct the COMFORT++ benchmark for each task,
we first collected 7 object meshes from the original imple-

mentation [19] and additional 6 meshes from Objaverse-
XL [5]. For the left/right and closer tasks, we arranged
three objects in a predefined layout, designating one as the
reference viewer, and added random perturbations to the
objects’ x,y coordinates to diversify the layouts. We pre-
pared 60 scenes and rendered each from 20 evenly spaced
azimuth viewpoints. Then, we randomly sampled five views
per scene, resulting in a total of 300 images for each task.
For the visibility task, we created 160 scenes, each contain-
ing a reference viewer and single target object positioned so
that the object is either visible or invisible from the viewer’s
perspective. We rendered each scene two opposite view-
points, yielding 320 images. Finally, for the facing task,
we arranged three objects in a linear configuration, setting
the central object as the reference viewer, and oriented it to
face either one of the two remaining objects. Each scene is
rendered once, resulting in 300 images in total.

For 3DSRBench [13], we used the original left/right and
facing criteria. We recasted the front/behind task as a visi-
bility judgment for two reasons: (i) the provided task can be
more naturally interpreted as deciding whether an object is
visible from the reference object’s viewpoint, and (ii) VLMs
struggle to infer that an object is behind it when the object
is not present in the image itself. This adjustment better
serves our goal of measuring the egocentric and allocentric
reasoning capabilities of VLMs.

E. Details on Text Prompts

In this section, we present the text prompts used at each
stage of our APC pipeline. To guide the VLM towards
the desired response format, we include examplar question-
answer pairs for in-context learning. For the text prompt fed
along with the visual prompt, we add simple prompt engi-
neering to help suppress hallucinations: we (i) define the the
relation “facing towards” and (ii) explicitly that the larger
object is considered as being closer to the viewer—an as-
sumption that holds since our abstraction assigns equal size
to every object.

(1) Scene Abstraction (Sec. 3.1) — Extracting Objects of
Interest.

-

# Situation Description

Given an image and a spatial-reasoning
question, identify all entities mentioned
in the question.

# Example

[Question] You are standing at the
airplane’s position, facing where it
is facing. Is the person on your left or
right?

[Detect] [airplane, person]

# Your Task
.




Now, given the question below, list the
entities that appear in the question.

[Question] {Question}
[Detect]

(2) Perspective Change (Sec. 3.2) — Setting a Reference
Perspective

Given a question about spatial reasoning,
we want to extract the perspective of the
question. If the question is from the
camera’s perspective, return ++camera++.

# Example

[Question] From the woman’s perspective,
is the tree on the left or right?
[Perspective] ++woman++

# Your Task

Given the question below, please specify
the perspective from which the question
is asked.

You must return in the format:
[Perspective] ++object_name++

[Question] {Question}
[Options] objl, obj2, ..., camera
[Perspective]

(3) Egocentric Rephrasing (Sec. C.2)

e N

From a sentence with a perspective
description, we need to remove the
perspective description.

# Example

[Question] From the car’s perspective,
which is on the right side: the person
or the tree?

[Output] Which is on the right side: the
person or the tree?

# Your Task
Given the question below, please remove
the perspective description.

[Question] {Question}
[Output]

(4) Perspective Prompting (Sec. 3.3) — Visual Prompt.

This is an image of a 3D scene.

- The viewer is facing towards the object
that is closest to the center.
- A larger object is closer to the viewer
compared to a smaller object.

# Task
Based on the image, please answer the
following question.

{Question}

Please only return the answer.

(5) Perspective Prompting (Sec. 3.3) — Numerical

Prompt.

p
Imagine that you are at the {src.obj}’s
position and facing where it is facing.
We have the coordinates of different
objects in {src.obj}’s coordinate system.

# Coordinate System

- The origin is at the {src.obj}’'s
position.

- The {src.obj}’s facing direction is [0,
0, 1], which is aligned with the z-axis.
- The x-axis is to the right, the y-axis
is up, and the z-axis is forward.

# Object Coordinates
[...]

# Task

Given the above {src.obj}’s coordinate
system and the object coordinates, please
answer the following question:

[Question] {Question}




References

(1]

(2]
(3]
(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

Garrick Brazil, Abhinav Kumar, Julian Straub, Nikhila Ravi,
Justin Johnson, and Georgia Gkioxari. Omni3d: A large
benchmark and model for 3d object detection in the wild.
In CVPR, 2023. 1

Anh-Quan Cao and Raoul De Charette. Monoscene: Monoc-
ular 3d semantic scene completion. In CVPR, 2022. 1
Manuel Dahnert, Ji Hou, Matthias Niener, and Angela Dai.
Panoptic 3d scene reconstruction from a single rgb image. In
NeurIPS, 2021. 1

Dawson-Haggerty et al. trimesh. 3

Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo,
Oscar Michel, Aditya Kusupati, Alan Fan, Christian Laforte,
Vikram Voleti, Samir Yitzhak Gadre, et al. Objaverse-xl: A
universe of 10m+ 3d objects. In NeurlIPS, 2023. 3

Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang,
Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang Zang, Pan Zhang,
Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for
evaluating large multi-modality models. In ACM MM, 2024.
3

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In ICCV, 2023. 1

Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Mukund
Varma T, Zexiang Xu, and Hao Su. One-2-3-45: Any single
image to 3d mesh in 45 seconds without per-shape optimiza-
tion. In NeurIPS, 2023. 1

Minghua Liu, Ruoxi Shi, Linghao Chen, Zhuoyang Zhang,
Chao Xu, Xinyue Wei, Hansheng Chen, Chong Zeng, Ji-
ayuan Gu, and Hao Su. One-2-3-45++: Fast single image
to 3d objects with consistent multi-view generation and 3d
diffusion. In CVPR, 2024. 1

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Qing Jiang, Chunyuan Li, Jianwei Yang,
Hang Su, et al. Grounding dino: Marrying dino with
grounded pre-training for open-set object detection. In
ECCV,2024. 1,2

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang
Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He,
Ziwei Liu, et al. Mmbench: Is your multi-modal model an
all-around player? In ECCV, 2024. 3

Chenyang Ma, Kai Lu, Ta-Ying Cheng, Niki Trigoni, and
Andrew Markham. Spatialpin: Enhancing spatial reason-
ing capabilities of vision-language models through prompt-
ing and interacting 3d priors. In NeurIPS, 2024. 1, 2

Waufei Ma, Haoyu Chen, Guofeng Zhang, Celso M de Melo,
Alan Yuille, and Jieneng Chen. 3dsrbench: A compre-
hensive 3d spatial reasoning benchmark. arXiv preprint
arXiv:2412.07825,2024. 3

Yinyu Nie, Xiaoguang Han, Shihui Guo, Yujian Zheng, Jian
Chang, and Jian Jun Zhang. Total3dunderstanding: Joint lay-
out, object pose and mesh reconstruction for indoor scenes
from a single image. In CVPR, 2020. 1

Yinyu Nie, Angela Dai, Xiaoguang Han, and Matthias
NieBiner. Learning 3d scene priors with 2d supervision. In
CVPR, 2023. 1

[16]

(17]

(18]

(19]

Zehan Wang, Ziang Zhang, Tianyu Pang, Chao Du, Heng-
shuang Zhao, and Zhou Zhao. Orient anything: Learning
robust object orientation estimation from rendering 3d mod-
els. arXiv, 2024. 1

Jin Yao, Hao Gu, Xuweiyi Chen, Jiayun Wang, and Zezhou
Cheng. Open vocabulary monocular 3d object detection.
arXiv preprint arXiv:2411.16833, 2024. 1

Wangbo Yu, Jinbo Xing, Li Yuan, Wenbo Hu, Xiaoyu Li,
Zhipeng Huang, Xiangjun Gao, Tien-Tsin Wong, Ying Shan,
and Yonghong Tian. Viewcrafter: Taming video diffusion
models for high-fidelity novel view synthesis. arXiv preprint
arXiv:2409.02048, 2024. 1,2

Zheyuan Zhang, Fengyuan Hu, Jayjun Lee, Freda Shi, Parisa
Kordjamshidi, Joyce Chai, and Zigiao Ma. Do vision-
language models represent space and how? evaluating spatial
frame of reference under ambiguities. In /CLR, 2025. 3



	Limitations and Future Work
	Analysis on Dense Reconstruction Baselines
	Implementation Details
	Scene Abstraction
	Egocentric Rephrasing
	Visual Prompt Rendering.

	Evaluation Details
	Details on Text Prompts

