Power of Cooperative Supervision: Multiple Teachers Framework for Advanced
3D Semi-Supervised Object Detection

Supplementary Material

1. Overview

In this supplementary material, we provide additional ana-
lyzes and experiments to comprehensively validate the ef-
fectiveness of MultipleTeachers. In Sec. 2 we elaborate on
the unique strengths of our proposed LiO dataset. In Sec. 3,
we provide a detailed explanation of the implementation
details for MultipleTeachers. In Sec. 4 we conduct exten-
sive ablation studies to analyze the impact of hyperparam-
eters and evaluate the compatibility of our framework with
various baseline detectors, highlighting its adaptability and
robustness. Finally, Sec. 5 includes a comparative visual-
ization of pseudo-labels generated by MultipleTeachers and
the strong baseline method HSSDA [4]. These visualiza-
tions emphasize the superior quality and accuracy of our
pseudo-labels, further demonstrating the advantages of our
framework in enhancing 3D semi-supervised object detec-
tion.

2. Unique Strengths of LiO Dataset

We summarize the unique strengths of our LiO. First, it
captured diverse and complex urban environments, span-
ning large, medium, and small cities across various condi-
tions (day/night and weather). It provides finely differenti-
ated annotations for a wide range of object categories, in-
cluding multiple types like kick scooters, fire trucks, and
ambulance. We ensured its high quality by conducting at
least three rounds of iterative feedback between annota-
tors and expert reviewers. Second, the data was collected
by a 128-channel RS Ruby LiDAR, and out of 585 raw
sequences recorded. We carefully selected 105 sequences
with the highest object density to maximize object diversity.
These frames were sampled at 2 Hz and annotated across
seven major object classes. Despite fewer total time of data,
our LiO achieves scenario diversity comparable to public
datasets, while also offering a more diverse set of object
classes to facilitate detailed evaluation (see Tab. 1).

3. Implementation Details

As shown in Tab. 2, MultipleTeachers follows the training
configurations of HSSDA. For the KITTI dataset [3], the
detection ranges are defined as [0, -40, 70, 40] along the X
and Y axes, and [-3, 1] along the Z axis. For the Waymo
Open Dataset (WOD) [9] and LiO datasets, the detection
ranges are set to [-75, -75, 75, 75] on the X and Y axes,
while the Z axis is defined as [-4, 2] for WOD and [-5, 5]
for LiO. For nuScenes dataset [1] , the detection ranges are

defined as [-52, -52, 52, 52] along the X and Y axes, and
[-5, 3] along the Z axis. In addition, Tab. 3 presents the data
ratios according to the settings for each dataset, which were
used to conduct various experiments on the four datasets.

To achieve state-of-the-art (SOTA) performance, Multi-
pleTeachers leverages advanced techniques, including shuf-
fle data augmentation and dual-dynamic thresholding [4].
In addition, the PointGen module is carefully configured by
setting its angular parameter, deg to 45-degree and the pa-
rameters v and o to 0.4 and 0.6, respectively.

To maintain a consistent update of pseudo-labels, Multi-
pleTeachers applies dual-dynamic threshold updates every
5 epochs. Similarly, the PointGen memory bank, which is
responsible for generating pseudo-points, is refreshed at the
same interval. This periodic update ensures that the pseudo-
point samples (P,;;) remain representative and contribute
effectively to performance gains.

4. Additional Experimental Results

Analysis of Hyperparameters in PointGen. We analyze
the impact of key hyperparameters (v, o, deg) on the perfor-
mance of our detector. Specifically, v and o are weight pa-
rameters that balance the confidence score S¢on, ¢ and den-
sity score Sgensity in PointGen module. To evaluate their ef-
fects, we conduct experiments with different combinations
of v and o, as detailed in Tab. 4 and 5. The results show
that the model achieves the best performance when ~ is set
to 0.4 and o to 0.6.

Furthermore, we investigate the influence of deg which

determines the angular size of the pie-shaped regions in
PointGen. In KITTI, experiments are carried out with deg
values of 15, 30 and 45. In LiO, experiments are performed
with various deg settings of 15, 30, 45, 60, and 120. As
shown in Tab. 6 and 7, 45-degree yields the highest mAP,
achieving 72.2 mAP on the KITTI moderate level and 50.8
mAP on the LiO dataset. However, performance remains
stable across the range of angles, indicating that PointGen
is relatively robust to changes in deg.
Effectiveness of PointGen. To demonstrate the effective-
ness of the PointGen module, we present the results of
its application across different network configurations in
Tab. 8. Notably, the highest detection accuracy is observed
when PointGen is applied solely to the teacher network
prior to pseudo-label generation. This suggests that Point-
Gen contributes to generating more accurate pseudo-labels
in the specialized teacher network, ultimately leading to en-
hanced detection performance in the student network.



Dataset Class Distribution (%) 3D Box Counts (K)
Veh. L.V. Ped. Cyc. Ped. Bic. Bus Tru. o.V. Mot.

KITTI [3] 82 - 13 5 4 1 - - - -
WOD [9] 68 - 31 1 6023 2771 66 - - - -
nuScenes [1] 56 17 25 3 222 11 16 88 15 13
H3D [7] 46 12 41 1 458 12 117 95 30 2
ONCE [5] 60 5 16 19 37 47 4 7 - -
LiO 62 11 22 4 168 10 17 61 6 22

Table 1. Distributions of class categories and 3D box counts between the LiO dataset and public datasets. Note that, ‘Veh.”, ‘L.V.’, ‘Ped.’,
‘Cyc., ‘Bic., ‘Tru’, ‘O.V., and ‘Mot.” indicate vehicle, large vehicle, pedestrian, cyclist, bicycle, truck, other vehicle, and motorcycle,

respectively.

. Dataset . mAP
Configuration i —<WoD 10 | nuScenes Density | Confidence | —g 1 i Tard
Detector PV-RCNN (8] CenterPoint [11] 0.2 0.8 83.1 70.7 65.4
Batch size 2 2 0.4 0.6 82.4 70.4 65.3
Weight decay 0.001 0.01 0.6 0.4 83.9 72.2 67.0
Learning rate 0.01 0.001 0.8 0.2 83.3 70.9 65.8
Optimizer Adam Adam Table 4. Ablation study on various combinations of confidence and
Epoch 80 30 30 20 density scores (y and o) in the Pseudo-points generator (PointGen)
Det.R.-x axis | 70 150 150 108 on 2% KITTI labeled split. The evaluation metrics are divided into
Det.R. -y axis 80 150 150 108 difficulty levels: Easy, Moderate (Mod.), and Hard.

Det.R. -z axis 4 6 10 8
V.S. -x axis 0.05 0.1 01 0.075 Density | Confidence | mAP | Car Ped. Mot. Bic. ...
V.S. -y axis 0.05 0.1 0.1 0.075 0.2 0.8 50.6 |78.4 45.7 50.9 20.8 ...
V.S. -7 axis 0.1 02 025 0.2 0.4 0.6 50.1 |78.6 4577 49.5 194 ..
0.6 04 50.8 | 78.8 46.4 51.8 20.5
Table 2. Detailed training configuration of MultipleTeachers. Note 0.8 0.2 50.1 177.9 45.6 500 193

that ‘Det.R.” denotes detection range (m) and ‘V.S.” is voxel size

(m).

Dataset Setting L spﬁtano (?}) Split
1 99
2 98
KITTI All (100%) 15 85
20 80
Small (5%) 1 4
WOD Medium (20%) 1 19
Large (100%) 1 99
nuScenes Medium (20%) 5 15
1 99
. Small (16K) 2 98
Lio 15 85
Large (112K) 15 85

Table 3. The experiment data ratios according to the settings for
each dataset. Note that ‘L.Split’ denotes labeled split and ‘U.Split’
is unlabeled split.

Comparison with SOTA on KITTI. Due to the HSSDA
github repository does not provide a KITTI 20% split, we
contacted the authors of DetMatch [6] and obtained their
official 20% split. On this split, MultipleTeachers achieves

Table 5. Ablation study on various combinations of confidence and
density scores in the PointGen on 2% LiO labeled split.

Degree mAP
Easy Moderate Hard
15 83.6 71.3 65.9
30 82.7 70.6 65.3
45 83.9 72.2 67.0

Table 6. Ablation study on the degree-wise PointGen on 2% KITTI
labeled split.

the same performance as the SOTA baseline (see Tab. 9).
Component-wise Analysis on WOD. To further validate
the superiority of our proposed modules, we individually
analyze the effectiveness of each component by integrating
the MGen and PointGen modules into the baseline model
(see Tab. 10). Specifically, replacing the general SGen mod-
ule with our proposed MGen module substantially improves
detection performance, resulting in a notable gain of 4.4
mAP (Level 1). Furthermore, combining both the MGen
and PointGen modules leads to an additional gain of 1.9
mAP (Level 1). These incremental improvements clearly
demonstrate the effectiveness and advantages of our pro-
posed modules.



Degree | mAP | Car Ped. Mot. Bic.
15 503 | 78.0 454 49.7 199
30 503 | 78.1 457 49.1 204
45 508 | 788 464 518 205
60 50.7 | 782 457 499 204
120 503 | 782 458 49.1 199

#Param. | Time (h.) |Mem. (GB)

Dataset | #Tea.| mAP (M) |Train Test|Train Test
1 |384 26 139 0.27|10.2 4.2

Wob 3 1428 52 259 027|139 4.2
1 |384 17 42 0.04] 76 26

nuScenes| 4 |41.7 40 57 0.04| 7.7 2.6
5 142.0 48 6.1 0.04| 79 2.6

Table 7. Ablation study on the degree-wise PointGen using 2%
LiO labeled split.

PointGen
Method Teacher Student mAP
MutipleTeachers { 70.2
MutipleTeachers v 70.3
MutipleTeachers v 72.2

Table 8. Ablation study on the impact of PointGen in various
teacher-student network on 2% KITTI labeled split. Note that, t
denotes the baseline method that does not use PointGen.

Dataset | Method mAP | Car Ped. Cyc.
DetMatch [6] 68.7 | 787 57.6 69.6
KITTI | HSSDA [4] 71.6 | 82.5 59.1 732
MultipleTeachers | 71.6 | 83.1 57.2 744

Table 9. Performance comparison of MultipleTeachers with SOTA
models on 20% KITTI labeled split.

. mAP
Method SGen MGen PointGen Ll 12
v 384 334
MultipleTeachers v 42.8 37.8
v v 44.7 394

Table 10. Ablation study on the effect of each component in Mul-
tipleTeachers. All experiments are performed on ’Small’ setting of
WOD. The last row presents the results achieved by utilizing the
proposed MGen and PointGen modules, respectively.

Trade-off between Performance and Cost. We conduct
an extensive ablation in which we varied the number of
teachers and measure accuracy, parameter count, training
time, and GPU memory on 8 RTX 3090 GPUs. Across
both WOD and nuScenes, we observe the same encour-
aging pattern: once the teacher pool grows to three or
more, training time rises only modestly and peak mem-
ory barely increases, yet accuracy leaps dramatically. In
other words, every extra teacher costs little but pays off
handsomely—delivering a remarkably favorable cost-to-
performance ratio (see Tab. 11). Especially, we add teach-
ers for traffic-cones and barriers on nuScenes. Most impor-
tantly, inference always runs on a single student network, so
deployment introduces zero additional latency or memory
overhead. In short, MultipleTeachers demands just a mod-
est, one-time training investment yet unlocks substantial ac-
curacy gains while preserving real-time performance.

Adaptability across Diverse Detectors. Additional exper-

Table 11. Comparison of performance and cost on various number
of teachers. ‘Tea.’ indicates the number of teachers, ‘Param.’ de-
notes the number of model weight parameters, and ‘Mem.” is GPU
memory usage. PV-RCNN is adopted as the baseline detector on
’Small’ setting of WOD, while CenterPoint [11] is used as the
baseline on "Medium’ setting of nuScenes. Note that the PointGen
module is not used in these experiments.

Dataset | Detector SSL Method mAP
Baseline 30.4

PV-RCNN [§] HSSDA x[4] 40.4
MultipleTeachers | 49.1

LiO Baseline 31.3
(Small 2%) Voxel-RCNN [2] [ HSSDA x*[4] 424
MultipleTeachers | 50.8

Baseline 18.5

SECOND [10] | HSSDA x[4] 26.4
MultipleTeachers | 37.4

Baseline 59.4

PV-RCNN [§] HSSDA x[4] 60.8

LiO MultipleTeachers | 61.4
(Large) Baseline 61.1
Voxel-RCNN [2] [ HSSDA x*[4] 62.5
MultipleTeachers | 62.7

Table 12. Experimental results for different detectors on ‘Small’
and ‘Large’ setting of LiO. For a fair comparison, all models incor-
porate SSL components from MultipleTeachers, including MGen
and PointGen. Note that “x’ is re-implemented by us.

iments on the LiO dataset further demonstrate the robust
generalization capability of MultipleTeachers. As presented
in Tab. 12, our proposed method consistently outperforms
the recent HSSDA model, on various detectors. These com-
petitive results further confirm that our framework can be
effectively applied across various detectors.

5. Pseudo-Labels Visualization

In this subsection, we analyze the quality of pseudo-labels,
a critical factor in determining the detection accuracy of the
student network. As depicted in Fig. 1, we visualize and
compare pseudo-labels generated at training epochs 20, 60,
and 80 using the KITTTI dataset with 2% labeled split. In the
ground truth (GT) boxes of the KITTI dataset, we define
that “Van’ class is included within Car category for consis-
tency. The regions enclosed by red circle lines indicate areas
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Figure 1. Qualitative comparison of pseudo-labels between MultipleTeachers and HSSDA on the KITTI dataset with 2% labeled
data split. This figure compares pseudo-labels generated by our MultipleTeachers framework and the previous approach, showcasing the
progressive accuracy improvements achieved by MultipleTeachers. Pseudo-labels are visualized every 20 epochs by the teacher network,
highlighting the enhanced accuracy and reliability of our method in capturing diverse object characteristics.
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Figure 2. Qualitative comparison of pseudo-labels on the LiO dataset using 2% labeled data split. The top row displays the ground
truth annotations, the middle row presents pseudo-labels generated by HSSDA, and the bottom row shows pseudo-labels predicted by
our MultipleTeachers framework. This comparison highlights the improved precision and reliability of pseudo-labels produced by our
approach, demonstrating its ability to capture finer object details and reduce false negatives effectively.



with false negatives, while black circle lines highlight true
positives.

The HSSDA model exhibits limitations, struggling to
produce accurate pseudo-labels for the cyclist class, even
after several epochs, and failing to detect the pedestrian
class at all until 80 epochs. In contrast, our MultipleTeach-
ers framework demonstrates consistent and robust perfor-
mance, generating high-quality pseudo-labels for both cy-
clist and pedestrian throughout the training progress.

This improvement underscores the significance of pro-
gressively accurate weight updates in the teacher network,
enabled by the C-EMA module. This mechanism effectively
enhances pseudo-label quality, which translates into supe-
rior detection performance. This analysis further validates
the efficacy of MultipleTeachers in addressing challenges
related to pseudo-labeling, particularly in sparse and com-
plex environments.

Fig. 2 presents the experimental results on the LiO
dataset, comparing the pseudo-label quality generated by
the HSSDA and MultipleTeachers frameworks across var-
ious scenarios. The first row illustrates the GT boxes, the
second row shows predictions from the HSSDA, and the
last row displays predictions from our MultipleTeachers
method.

Our approach demonstrates a marked improvement in
pseudo-label accuracy, as evidenced in the regions high-
lighted by black circle lines indicating true positives. Multi-
pleTeachers effectively captures both small objects such as
pedestrians, motorcycles, and bicycles, and larger ones like
trucks and buses, surpassing the performance of HSSDA. In
contrast, the regions enclosed by red circle lines and dotted
red circle lines highlight areas where HSSDA exhibits false
negatives and false positives, respectively.

These results emphasize the advantages of our category-
specialized teacher networks in generating precise pseudo-
labels. By producing reliable labels, MultipleTeachers
framework enables the student network to achieve signif-
icantly enhanced 3D object detection performance, par-
ticularly in challenging and diverse urban scenarios. This
evaluation further validates the robustness of our method
for semi-supervised learning tasks in 3D object detec-
tion.

References

[1] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. In CVPR, pages 11618—
11628, 2020. 1,2

[2] Jiajun. Deng, Shaoshuai. Shi, Peiwei. Li, Wengang. Zhou,
Yanyong. Zhang, and Houqiang. Li. Voxel r-cnn: Towards
high performance voxel-based 3d object detection. In AAAI,
pages 1201-1209, 2021. 3

[3] Andreas. Geiger, Phili. Lenz, and Raquel. Urtasun. Are we

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

ready for autonomous driving? the kitti vision benchmark
suite. In CVPR, pages 3354-3361, 2012. 1,2

Chuandong. Liu, Chengiang. Gao, Fangcen. Liu, Pengcheng.
Li, Deyu. Meng, and Xinbo. Gao. Hierarchical supervision
and shuffle data augmentation for 3d semi-supervised object
detection. In CVPR, pages 23819-23828, 2023. 1, 3
Jiageng Mao, Minzhe Niu, Chenhan Jiang, Xiaodan Liang,
Yamin Li, Chaoqgiang Ye, Wei Zhang, Zhenguo Li, Jie Yu,
and Chunjing Xu. One million scenes for autonomous driv-

ing: Once dataset. arXiv preprint arXiv:2106.11037, 2021.
2

J. Park, C. Xu, Y. Zhou, M. Tomizuka, and W. Zhan. Det-
match: Two teachers are better than one for joint 2d and 3d
semi-supervised object detection. In ECCV, pages 370-389,
2022. 2,3

Abhishek Patil, Srikanth Malla, Haiming Gang, and Yi-Ting
Chen. The h3d dataset for full-surround 3d multi-object de-
tection and tracking in crowded urban scenes. pages 9552—
9557, 2019. 2

Shaoshuai. Shi, Chaoxu. Guo, Li. Jiang, Zhe. Wang, Jian-
ping. Shi, Xiaogang. Wang, and Hongsheng. Li. Pv-rcnn:
Point-voxel feature set abstraction for 3d object detection. In
CVPR, pages 10529-10538, 2020. 2, 3

Pei. Sun, Henrik. Kretzschmar, Xerxes. Dotiwalla, Aurelien.
Chouard, Vijaysai. Patnaik, Paul. Tsui, James. Guo, Yin.
Zhou, Yuning. Chai, and Benjamin. Caine. Scalability in
perception for autonomous driving: Waymo open dataset. In
CVPR, pages 2446-2454,2020. 1, 2

Yan. Yan, Yuxing. Mao., and Bo. Li. Second: Sparsely em-
bedded convolutional detection. Sensors, 18(10):3337,2018.
3

Tianwei Yin, Xingyi Zhou, and Philipp Krihenbiihl. Center-
based 3d object detection and tracking. In CVPR, pages
11779-11788, 2021. 2, 3



