
Scheduling Weight Transitions for Quantization-Aware Training
- Supplementary Material

In the supplement, we give additional results in image
classification and object detection (Sec. S1). We then pro-
vide in-depth analyses (Sec. S2) and discussions on our
method (Sec. S3). Finally, we present the implementation
details of our method (Sec. S4) and comprehensive descrip-
tion of a quantizer (Sec. S5). We summarize in Algorithm 1
an overall process of our method.

S1. Results
S1.1. Image classification
Comparison to the state of the art We present in Ta-
ble S1 a quantitative comparison of our approach and state-
of-the-art methods for QAT [2, 3, 7, 8, 12, 17, 23, 29] on
ImageNet [4], in terms of a top-1 validation accuracy. For a
fair comparison, we perform comparisons with the methods
using uniform quantization schemes and a vanilla architec-
ture. We can see from the table that our method (i.e., us-
ing either SGDT or AdamT) achieves state-of-the-art per-
formance for ResNet-18 under the 1/1 and 2/2 bit-width
settings, and shows competitive performance for the 3/3
and 4/4 bit-width settings. In terms of performance gains
or drops compared to the full-precision models, our re-
sults are better than or on a par with the state of the art.
For MobileNetV2, our method also sets a new state of the
art, except for the 3/3 bit-width setting. The work of [23]
alleviates the oscillation problem in QAT by freezing la-
tent weights or adding a regularization term. It adopts
architecture-specific and bit-specific hyperparameters, such
as a LR, a weight decay, and a threshold for weight freezing.
This is because freezing weights and adding the regularizer
could potentially degrade trainability and disturb the train-
ing process, making the QAT process sensitive to hyperpa-
rameters. In contrast, our method is more practical as it
performs consistently well under the various bit-width set-
tings with the same set of hyperparameters. For complete-
ness, we also try to tune a TR factor λ specific to the 3/3-bit
setting of MobileNetV2, and improve the performance with
the TR factor λ of 2e-3.

Other QAT methods mostly focus on designing a quan-
tizer in a forward step (e.g., PACT [3], QIL [12], LSQ [7],
LSQ+ [2]) or addressing a gradient mismatch problem in
a backward step (e.g., QNet [29], DSQ [8], EWGS [17]).
Our approach is orthogonal to these methods in that we fo-
cus on an optimization step in QAT. Namely, we propose to
schedule a target TR instead of a LR itself, and introduce

Algorithm 1 Optimization process using a TR scheduler.
Require: the number of iterations T ; a target TR Rt; a momentum
constant m.

1: while t < T do
2: Compute a current TR kt [Eq. (5)]:

kt ←
∑N

i=1 I[wt
d(i)̸=wt−1

d
(i)]

N
.

3: Estimate a running TR Kt [Eq. (10)]:
Kt ← mKt−1 + (1−m)kt.

4: Adjust a TALR U t [Eq. (11)]:
U t ← max

(
0, U t−1 + η

(
Rt −Kt

))
.

5: Update latent weights wt with a gradient term gt

and the TALR U t [Eq. (12)]:
wt+1 ← wt − U tgt.

6: end while

a novel TALR to update latent weights. Compared to other
methods that require computationally expensive operations
for differentiable quantizers (e.g., QNet[29], DSQ [8]) or
approximating a hessian trace (e.g., EWGS [17]), ours is
relatively simple and efficient, since it adds few comparison
and scalar operations only in the QAT process.

Quantitative results. We show in Fig. S1 training curves
on ImageNet for MobileNetV2 and ReActNet-18 using 4-
bit and binary weights/activations, respectively. We can see
from Figs. S1a and S1b that the optimizer coupled with our
TR scheduling technique (i.e., AdamT) can control the av-
erage effective step size of quantized weights roughly using
a target TR. On the other hand, the plain optimizer adopting
a user-defined LR (i.e., Adam) fails to control it by schedul-
ing the LR. For example, the average effective step sizes for
quantized weights in MobileNetV2 (i.e., the blue curve in
the first row of Fig. S1b) do not approach zero at the end
of training. Such large changes in the quantized weights
can lead to unstable batch normalization statistics [11], re-
sulting in noisy and degraded test time performance [23, 24]
(i.e., the blue curve in the first row of Fig. S1d). On the con-
trary, the TR scheduling technique enables better training in
terms of the convergence rate and performance, which can
be verified by the training losses and validation accuracy in
Figs. S1c and S1d, respectively.

S1.2. Object detection
Quantitative results. We compare in Table S2 the quan-
tization performance of detection models in terms of an

1



Table S1. Quantitative comparison of our method and the state of the art on ImageNet [4] in terms of a top-1 validation accuracy. The
numbers in parentheses indicate the performance gains or drops compared to the full-precision (32/32) models. All numbers are taken from
corresponding works except for LSQ [7], where the results are reproduced in [2] using a vanilla structure of ResNet [9].

Architecture Methods Optimizer
Weight/activation bit-widths

1/1 2/2 3/3 4/4 32/32

ResNet-18

PACT [3] SGD - 64.4 (−5.8) 68.1 (−2.1) 69.2 (−1.0) 70.2
QIL [12] SGD - 65.7 (−4.5) 69.2 (−1.0) 70.1 (−0.1) 70.2
QNet [29] SGD 53.6 (−16.7) - - - 70.3
DSQ [8] - - 65.2 (−4.7) 68.7 (−1.2) 69.6 (−0.3) 69.9
LSQ [7] SGD - 66.7 (−3.4) 69.4 (−0.7) 70.7 (+0.6) 70.1
LSQ+ [2] SGD - 66.8 (−3.3) 69.3 (−0.8) 70.8 (+0.7) 70.1
EWGS [17] SGD 55.3 (−14.6) 67.0 (−2.9) 69.7 (−0.2) 70.6 (+0.7) 69.9
Ours SGDT 55.8 (−14.1) 66.9 (−3.0) 69.7 (−0.2) 70.6 (+0.7) 69.9
Ours AdamT 56.3 (−13.6) 67.2 (−2.7) 69.7 (−0.2) 70.4 (+0.5) 69.9

MobileNetV2

DSQ [8] - - - - 64.8 (−7.1) 71.9
EWGS [17] SGD - - - 70.3 (−1.6) 71.9
Nagel et al. [23] SGD - - 67.6 (−4.1) 70.6 (−1.1) 71.7
Ours SGDT - 53.6 (−18.3) 67.0 (−4.9) 70.5 (−1.4) 71.9
Ours AdamT - 53.8 (−18.1) 67.3 (−4.6) 70.8 (−1.1) 71.9
Ours (λ=2e-3) AdamT - - 67.8 (−4.1) - 71.9

0 200K 400K 600K
Iterations (t)

0

2e-5

6e-5

1e-4
μt in Adam
Rt in AdamT

0

1e-3

2e-3

0 200K 400K 600K
Iterations

0

5e-5

1.5e-4

2.5e-4

Adam
AdamT

0 200K 400K 600K
Iterations

1.3

1.4

1.5

1.6

1.7
Adam
AdamT

0 30 60 90 120
Epochs

62

64

66

68

70 Adam
AdamT

0 200K 400K 600K
Iterations (t)

0

2e-4

6e-4

1e-3
μt in Adam
Rt in AdamT

0

1e-4

3e-4

5e-4

(a) LR µ and target TR Rt.

0 200K 400K 600K
Iterations

0

2e-4

6e-4

1e-3
Adam
AdamT

(b) Avg. effective step
sizes of quantized weights.

0 200K 400K 600K
Iterations

1.7

1.8

1.9

2.0

2.1
Adam
AdamT

(c) Running avg. of
training losses.

0 30 60 90 120
Epochs

56

58

60

62

64

66
Adam
AdamT

(d) Top-1 validation accuracy.

Figure S1. Training curves for quantized models using Adam [14] and AdamT on ImageNet [4]. The results in the first and second rows
are obtained with MobileNetV2 [26] and ReActNet-18 [20] using 4-bit and binary weights/activations, respectively. For the visualizations
in (b), we monitor the average effective step sizes of quantized weights in the 19th and 17th layers of MobileNetV2 and ReActNet-18,
respectively. (Best viewed in color.)

average precision (AP) on the validation split of MS
COCO [18]. We train RetinaNet [19] with the ResNet-
18/34 [9] backbones using either SGD or SGDT on the
training split of MS COCO. From Table 4 of the main pa-
per and Table S2, we can see that using a TR scheduling
technique improves the performance of quantized models
in terms of AP, compared to the plain optimization method,

across different bit-width and backbone settings. This con-
firms once again the effectiveness and generalization ability
of our approach.

Qualitative results. We compare in Fig. S2 qualitative
results of baseline (SGD) and our (SGDT) models, us-
ing RetinaNet with the ResNet-50 backbone, with 4-bit



Table S2. Quantitative comparison of quantized models on object detection. We train RetinaNet [19] on the training split of MS COCO [18]
with different backbone networks and quantization bit-widths, using either the plain optimization method (SGD) or ours (SGDT). We report
the average precision (AP) on the validation split.

Backbone W/A Optimizer AP AP50 AP75 APS APM APL

ResNet-34

FP SGD 37.70 57.32 40.71 22.35 41.50 48.93

4/4
SGD 37.99 57.29 40.34 22.96 41.16 49.32

SGDT 38.14 57.39 40.93 22.05 41.70 49.79

3/3
SGD 37.32 56.61 39.95 22.22 40.54 49.16

SGDT 37.64 56.78 40.28 21.81 40.42 49.89

ResNet-18

FP SGD 34.06 53.15 36.17 19.66 36.48 44.45

4/4
SGD 35.09 54.05 37.40 20.34 37.62 46.69

SGDT 35.30 54.46 37.59 19.92 37.61 46.83

3/3
SGD 34.32 53.09 36.44 19.34 36.46 45.33

SGDT 34.72 53.63 36.84 19.91 37.21 45.64

Baseline. Ours. Ground truth. Baseline. Ours. Ground truth.

Figure S2. Qualitative comparison for object detection on MS COCO [18] using RetinaNet [19] with the ResNet-50 [9] backbone, where
both weights and activations are quantized into 4-bit. The results of baseline and ours are obtained from the models trained with SGD and
SGDT, respectively. (Best viewed in color.)

weights/activations. The baseline model trained with SGD
provides incorrect bounding boxes in the presence of over-
lapped/adjacent instances (e.g., the cow and teddy bear in
the first and second examples, respectively), misclassifies
object classes (e.g., the food container in the third exam-
ple), and fails to detect objects (e.g., the bicycle in the last
example). In contrast, the model trained with our approach
offers accurate bounding boxes, and classifies object classes
successfully.

S2. Analysis
S2.1. Analysis on TR scheduling
We show in Fig. S3 an in-depth analysis on how a TR sched-
uler works during QAT. We can see from Fig. S3a that the
running TR Kt roughly follows the target TR Rt, indicat-
ing that we can control the average effective step size of
quantized weights (the red curve in Fig. 1c of the main pa-
per) by scheduling the target TR. This is possible because

the TALR U t is adjusted adaptively to match the running
TR Kt with the target one Rt (Fig. S3b). We can see that
the TALR U t increases initially, since the running TR Kt

is much smaller than the target TR Rt. The TALR U t then
decreases gradually to reduce the number of transitions, fol-
lowing the target TR Rt. Note that the TALR U t approaches
zero rapidly near the 50K-th iteration. To figure out the
reason, we show in Figs. S3c and S3d distributions of nor-
malized latent weights and their average distances to the
nearest transition points, respectively. We can observe in
Fig. S3c that latent weights tend to be concentrated near the
transition points of a quantizer as the training progresses,
similar to the case in Sec. 4.1 in the main paper using a
user-defined LR. This implies that transitions occur more
frequently in later training iterations if we do not properly
reduce the degree of parameter change for latent weights.
In particular, we can see in Fig. S3d the average distances
between the normalized latent weights and the nearest tran-
sition points are relatively small after the 50K-th iteration.



0 10K 30K 50K 70K
Iterations (t)

0.000

0.002

0.004

0.006
Running TR Kt

Target TR Rt

(a) Running TR Kt and
target TR Rt.

0 10K 30K 50K 70K
Iterations (t)

0.0

0.2

0.4

0.6

0.8

1.0

(b) TALR Ut.

70K-th iter
50K-th iter
30K-th iter

-2 -1.5
(TP)

-1 -0.5
(TP)

0 0.5
(TP)

1
10K-th iter

(c) Distributions of normalized
latent weights.

0 10K 30K 50K 70K
Iterations

0.22

0.24

0.26

0.28

0.30

0.32

(d) Average distances to the nearest
transition points.

Figure S3. Analysis on TR scheduling. We train ResNet-20 [9] on CIFAR-100 [16] using SGDT, where we quantize both weights and
activations with 2-bit representations. We visualize distributions of normalized latent weights in the 16th layer in (c), and average distances
between normalized latent weights and the nearest transition points in (d). The transition points in (c) are denoted by TPs in the x-axis.
The top-1 test accuracy and average effective step sizes of quantized weights are shown by the red curves in Figs. 1d and 1c of the main
paper, respectively. (Best viewed in color.)

Under such circumstance, the TALR should become much
smaller in order to reduce the running TR, as in the sharp
decline around the 50K-th iteration. We can thus conclude
that our approach adjusts the TALR by considering the dis-
tribution of the latent weights implicitly.

S2.2. Comparison using a step decay scheduler

We provide in Table S3 a quantitative comparison between
plain optimization methods (SGD and Adam [14]) and
ours (SGDT and AdamT) using a step scheduler. We use
the same training setting in Table 2 of the main paper, while
replacing a cosine scheduler [21] with the step scheduler.
Both LRs and target TRs are divided by 5 after every 50
and 100 epochs for ReActNet-18 [20] and ResNet-20 [9],
respectively. We can see from this table that the plain opti-
mizers using the step scheduler suffer from significant accu-
racy drops, compared to the cases for the the cosine sched-
uler. The main reason is that it is difficult to control the av-
erage effective step size of quantized weights using a user-
defined LR, especially when the LR is decayed by the step
scheduler. On the other hand, the optimizers using our TR
scheduling technique are relatively robust to the step sched-
uler, showing less performance drops than the plain ones
for most cases. We can also observe that the performance
degrades more severely for the models using the ResNet-
20 [9] architecture, where the number of parameters is much
less than that of the ReActNet-18 [20] architecture (276K
for ResNet-20 vs. 11,235K for ReActNet-18). This indi-
cates that training a small quantized model with the step
scheduler is more challenging, possibly because the sched-
uler can cause large parameter changes even at the end of
the training.

To further analyze the difference between the LR and
TR scheduling techniques with the step scheduler, we com-
pare in Fig. S4 the LR in SGD and TALR in SGDT during
training, with corresponding test accuracies. We can ob-

0 100 200 300 400
Epochs

50.0

55.0

60.0

65.0

SGD
SGDT

(a) Test accuracy (%).

0 20K 40K 60K 80K
Iterations (t)

1e-3

1e-2

1e-1
μt in SGD
Ut in SGDT

1e-6

1e-4

1e-2

1

(b) LR µt and TALR Ut.

Figure S4. Comparison between SGD and SGDT using a step
scheduler. We train ResNet-20 [9] with 2-bit weights and activa-
tions on CIFAR-100 [16]. Both the LR for SGD and target TR for
SGDT are divided by 5 after every 100 epochs. For comparison,
we show in (b) the LR µt in SGD and TALR U t in SGDT, where
both are used for updating latent weights in Eqs. (4) and (12) of
the main paper. (Best viewed in color.)

serve from Fig. S4a that SGDT provides better results in
terms of both convergence rate and accuracy. As discussed
in Sec. 4.1 of the main paper, latent weights approach tran-
sition points progressively during QAT, and thus it is dif-
ficult to adjust the number of transitions explicitly using
a user-defined LR. This could be particularly problematic
when the LR is fixed for a number of iterations. Recent
QAT methods [7, 13, 17, 20, 28] circumvent this issue by
decaying a LR to zero gradually, e.g., using the cosine an-
nealing technique [21], but this does not fully address the
problem. On the other hand, our method is relatively robust
to the use of the step scheduler. Since we optimize latent
weights using a TALR, we can control the degree of param-
eter changes for quantized weights by scheduling the target
TR in our method. In contrast to the LR, the TALR de-
creases gradually even when the scheduler does not alter the
target TR (Fig. S4b), confirming once more the fact that the
TALR is adjusted adaptively considering the distribution of
latent weights. This result demonstrates the robustness and



Table S3. Quantitative comparison of optimization methods for QAT using a step decay scheduler on CIFAR-100/10 [16]. Both LRs and
target TRs for SGD and SGDT are divided by 5 after every 50 and 100 epochs for ReActNet-18 [20] and ResNet-20 [9], respectively.
Numbers in parentheses indicate accuracy drops compared to the models in Table 2 of the main paper trained with a cosine scheduler.

Optimizer

CIFAR-100 CIFAR-10

ReActNet-18 ResNet-20 ReActNet-18 ResNet-20
(W32A1: 69.6) (FP: 65.1) (W32A1: 91.3) (FP: 91.1)

1/1 1/1 2/2 1/1 1/1 2/2

SGD 69.0 (−0.7) 45.8 (−9.1) 61.3 (−2.8) 90.9 (−0.0) 82.9 (−2.3) 89.8 (−0.4)
SGDT 71.9 (−0.3) 55.3 (−0.5) 64.9 (−0.6) 93.0 (−0.0) 85.2 (−0.4) 90.3 (−0.4)

Adam 68.1 (−1.4) 49.9 (−4.9) 60.9 (−2.4) 82.5 (−7.9) 82.4 (−2.4) 89.6 (−0.6)
AdamT 71.7 (−0.1) 54.4 (−1.5) 64.6 (−0.6) 92.9 (−0.0) 85.3 (−0.4) 90.3 (−0.8)

Table S4. Quantitative comparison of different TR fac-
tors λ (i.e., initial target TRs). We quantize ResNet-20 [9] using
SGDT with 2-bit weights/activations, and report a top-1 test accu-
racy on CIFAR-100 [16].

TR factor λ 1e-3 2e-3 3e-3 4e-3 5e-3 6e-3 7e-3 8e-3 9e-3 1e-2

Test accuracy 62.5 64.2 64.3 65.3 65.5 65.1 63.1 63.6 63.6 64.0

Table S5. Quantitative comparison for plain optimization methods
and our TR scheduling technique with various optimizers. We re-
port a top-1 test accuracy on CIFAR-100 [16] using ResNet-20 [9]
with 2-bit weights/activations.

SGD Adam NAdam Adamax AdamW RMSProp Adagrad

Plain 64.1 63.3 63.3 62.4 63.8 64.6 54.2
Ours 65.5 65.2 65.1 64.7 66.2 65.1 61.1

generalization ability of our approach on various types of
schedulers.

S2.3. Analysis on initial target TRs

To better understand how an initial target TR influences the
quantization performance, we present in Table S4 a quanti-
tative comparison of different TR factors λ adjusting the
initial TRs. We train ResNet-20 [9] models on CIFAR-
100 [16] using 2-bit weights and activations with SGDT and
report top-1 test accuracies. We can observe that the TR fac-
tors within a wide range of intervals (i.e., [4e-3, 6e-3]) pro-
vide satisfactory performance, outperforming the LR-based
optimization strategy (i.e., SGD in Table 2 of the main pa-
per) by significant margins (1.0∼1.4). Similar to the LR,
extremely large or small TR factors degrade the quantiza-
tion performance, which could make the training unstable.
Therefore, setting an appropriate value for the TR factor is
crucial in the TR scheduling technique, analogous to deter-
mining an initial LR to train full-precision models.

Table S6. Quantitative comparison of quantized models trained
with SGDT using different final target TRs. We report mean and
standard deviation of top-1 test accuracies on CIFAR-100 [16]
over five random runs, obtained with ResNet-20 [9] using 2-bit
weights and activations.

Final target TR 0 1e-5 1e-4 1e-3

Final target average
effective step size 0 5e-6 5e-5 5e-4

Test accuracy 65.61 65.34 64.63 62.12
(±0.21) (±0.26) (±0.59) (±0.70)

Table S7. Training time comparison on ImageNet with 4 A5000
GPUs, in terms of GPU hours. We quantize ResNet-18 except for
AdamW/-T, where we quantize DeiT-T.

SGD Adam AdamW

Plain 174 175 477
Ours 176 178 492

S2.4. Comparison with different optimizers
To verify the generalization ability of our TR scheduling
technique to other optimizers, we compare in Table S5
the quantization performance between plain optimization
methods and ours with various optimizers, including SGD,
Adam [14], NAdam [5], Adamax [14], AdamW [22], RM-
SProp [27], and Adagrad [6]. Specifically, we train ResNet-
20 on CIFAR-100 [16] with 2-bit weights and activations
for comparison. For the optimizers other than SGD, we
exploit the same hyperparameters as the ones for Adam in
Table 2 of the main paper, while we change the weight de-
cay to 1e-2 for AdamW. Note that AdamW decouples the
weight decay from a parameter update step, suggesting that
it requires a different hyperparameter for the weight decay.
For RMSProp, we use the momentum gradient with a mo-
mentum value of 0.9, which is analogous to SGD. From the
table, we can clearly see that the TR scheduling technique
improves the quantization performance consistently across
all optimizers. Our method achieves 0.5%∼6.9% gains over



0 20K 40K 60K 80K
Iterations

0.000

0.002

0.004

0.006

0.008

(a) Target TR Rt.

0 20K 40K 60K 80K
Iterations

0.000

0.002

0.004

0.006

0.008
Eq. (11) 
Eq. (v) 
Eq. (vi)

(b) Running TR Kt.

0 20K 40K 60K 80K
Iterations

0.0

0.2

0.4

0.6

0.8

1.0 Eq. (11) 
Eq. (v) 
Eq. (vi)

(c) TALR Ut.

0 100 200 300 400
Epochs

50.0

55.0

60.0

65.0

Eq. (11) 
Eq. (v) 
Eq. (vi)

(d) Test accuracy.

Figure S5. Comparison of different update schemes for a TALR. We train ResNet-20 [9] on CIFAR-100 [16] with 2-bit weights and
activations, while adjusting the TALR based on different methods in Eqs. (11), (S1) and (S2). (Best viewed in color.)

the plain optimization methods, which demonstrates the ef-
fectiveness of our method and its generalization ability to
various optimizers. In particular, AdamW coupled with
our TR scheduling technique shows the best performance,
indicating that we could further improve the quantization
performance by carefully selecting an optimizer and corre-
sponding hyperparameters.

S2.5. Training time comparison
We compare in Table S7 training time of optimization meth-
ods. Our method takes training time, similar to plain
optimization methods, demonstrating its efficiency. The
marginal overheads of ours is due to the computation of the
TR and the adjustment of the TALR, both of which involve
lightweight operations such as element-wise comparisons
and scalar updates, which are computationally inexpensive
compared to the overall training process.

S3. Discussion

S3.1. Importance of reducing average effective step
size

Conventional optimization methods for full-precision mod-
els typically decay a LR to reduce the degree of parameter
changes (i.e., average effective step sizes). This prevents
full-precision weights from overshooting from a local opti-
mum, and improves the convergence of the model [10, 15].
Similarly, when training a quantized model, small average
effective step sizes for quantized weights are preferred in
later training iterations. Large changes in the quantized
weights at the end of training could disturb convergence and
degrade the quantization performance [23, 24], as shown in
Figs. 1, 2, and S1. To further support this, we perform an
experiment on the influence of the average effective step
size of quantized weights on the quantization performance
at the end of training. To this end, we train ResNet-20 [9]
on CIFAR-100 [16] with 2-bit weights and activations us-
ing SGDT for different final target TRs. We report in Ta-
ble S6 the mean and standard deviation of top-1 test ac-
curacies over five random runs for each model. We can

clearly see that the smaller average effective step sizes at
the end of training provide better performance with less de-
viation, suggesting that the large step sizes in later training
iterations disturb convergence. These results demonstrate
once more the importance of the TR scheduling technique,
since it is difficult to control the average effective step size
of quantized weights, especially in later training iterations,
with conventional LR scheduling in QAT.

S3.2. Comparison of update schemes for TALR
We adjust a TALR adaptively to match a current running TR
with a target one. To this end, the update rule for the TALR
should meet the following criteria: (1) If the running TR Kt

is smaller than the target one Rt, the TALR U t should in-
crease to allow more latent weights to pass transition points.
(2) If the running TR Kt is larger than the target one Rt, the
TALR U t should decrease to reduce the number of transi-
tions. (3) If the current running TR Kt matches the target
one Rt, the TALR U t should remain unchanged. We cur-
rently adjust the TALR in an additive manner in Eq. (11)
of the main paper, similar to the weight update in gradient-
based optimizers. Here, we consider two alternative vari-
ants. First, we update the TALR in a multiplicative manner
as follows:

U t = U t−1 R
t

Kt
. (S1)

While the multiplication allows fast adaptation for the
TALR, it might be sensitive to outliers from the running
TR Kt or drastic changes in the target TR Rt. To stabilize
the update, we adjust the TALR in a similar way to Eq (S1),
but with momentum, as follows:

U t = m′U t−1 + (1−m′)U t−1 R
t

Kt
, (S2)

where m′ is a momentum hyperparameter, which is set to
the same value as m in Eq. (10) of the main paper for
simplicity. To compare the update schemes, we analyze
in Fig. S5 the QAT process of ResNet-20 [9] on CIFAR-
100 [16]. We can see from Figs. S5a and S5b that the run-
ning TRs Kt closely follow a target one Rt with the update



schemes of Eqs. (11) and (S2). The scheme in Eq. (S1)
fails to follow the target TR, resulting in the worst perfor-
mance (Fig. S5d). The multiplicative update in Eq. (S1)
enables fast adaptation, but it is unstable and particularly
problematic when the target TR Rt changes abruptly by a
step scheduler. The momentum update in Eq. (S2), on the
other hand, offers a good compromise between stability and
adaptation speed, achieving the quantization performance
comparable to the update scheme of Eq. (11) of the main
paper. Although we adopt the scheme of Eq. (11) in our TR
scheduling technique for conciseness, Fig. S5 suggests that
how to adjust the TALR is not unique, and it can be updated
in various ways.

S3.3. Average effective step size
The TR scheduling technique adjusts a TR of quantized
weights (i.e., Eq. (5) of the main paper) explicitly, which in
turn controls the degree of parameter changes for the quan-
tized weights. As a variant of our method, we could instead
formulate kt in Eq. (5) the main paper with the average ef-
fective step size of the quantized weights as follows:

kt =

∑N
i=1

∣∣wt
q(i)− wt−1

q (i)
∣∣

N
. (S3)

In this way, we could control the average effective step
size of the quantized weights directly during training, sim-
ilar to the TR in our method. Note that the effects of our
method and its variant are nearly the same, if the quantized
weights transit between adjacent discrete levels as discussed
in Eq. (9) of the main paper. This is always true for binary
weights, or usually happens especially when the parame-
ter updates for latent weights are small. When adopting
the variant in Eq. (S3), however, it could be difficult to set
a hyperparameter (i.e., an initial target value for the aver-
age effective step size) due to different scales in quantized
weights. For example, several quantization methods [7, 25]
provide quantized weights whose min-max ranges are dif-
ferent depending on layers in a model. In this case, we
should use different search ranges for individual layers, to
set initial target values, since the scales of average effec-
tive step sizes could vary in different layers. It is however
computationally demanding to find an optimal initial tar-
get value for each layer separately. Accordingly, we focus
on scheduling the TR rather than the average effective step
size, which is more easy to use and generalizable to various
quantization schemes.

S4. Implementation Details
S4.1. Experimental settings
Following the experimental protocol in [12, 17, 20, 28, 30],
we initialize network weights from pretrained full-precision
models for MobileNetV2, ResNets, DeiTs and RetinaNet.

Similarly, the weights in ReActNet-18 are initialized us-
ing the pretrained activation-only binarized model. We
do not quantize the first and last layers. We use either
plain optimizers using a LR (SGD, Adam, and AdamW),
or their variants using our TR scheduling technique (SGDT,
AdamT, and AdamWT), whose gradient terms are the same
as SGD, Adam, and AdamW, respectively. Note that we use
a TR scheduler to the latent weights only (i.e., full-precision
weights coupled with quantizers). Other parameters that are
not quantized (e.g., the weights in the first and last layers)
are updated with the plain optimizers using a LR. We adopt
the cosine scheduler [21] for both the LR and the target TR,
decaying them to zero gradually. For ReActNet-18 on Im-
ageNet, we use the linear scheduler, following the training
scheme in [20]. We exploit STE [1] to propagate gradients
in discretization functions. To set an initial value of the
learnable scale parameter s in Eq. (13) of the main paper,
we follow the initialization technique in [17]. For an ini-
tial TALR, we use the same value as an initial LR for full-
precision parameters. We also set η in Eq. (11) of the main
paper to the same value as an initial TALR (i.e., η = U0),
adjusting the TALR according to its initial value, e.g., up-
dating the TALR more finely when the initial value is small.
Note that the number of transition points increases as bit-
widths of weights get larger, suggesting that a larger target
TR is desirable for larger bit-widths. Accordingly, moti-
vated by [7] that uses different gradient scales according to
bit-widths, we set the initial target TR to λ

√
bw, where λ is

a TR factor, a hyperparameter to set, and bw is the bit-width
of weights.

We summarize in Table S8 hyperparameter settings for
our experiments. If available, we follow the previous
works [7, 17, 19, 20, 23] to set hyperparameters (e.g., num-
ber of training epochs/iterations, batch size, LR, weight de-
cay, and decay scheduler). Different from the original work
of RetinaNet [19], we do not freeze the ResNet [9] back-
bones to optimize quantized weights via QAT, and adopt
the cosine decay scheduler [21]. For the models exploit-
ing our TR scheduling technique, we fix the TR momentum
constant m to 0.99 for simplicity. We choose the TR fac-
tor λ in a set of {5e-3, 1e-3, 5e-4, 1e-4}. When we train a
scale parameter s in Eq. (13) of the main paper, we set the
LR to the value ten times smaller than the one for weight
parameters (i.e., the LR in Table S8), similar to the works
of [12, 17], for simplicity, instead of using the heuristic gra-
dient scaling in LSQ [7]. Note that when we apply our
TR scheduling technique, we do not train the scale parame-
ters s for weight quantizers and fix the initial values, since
training them makes it difficult to control a TR of quantized
weights. We will discuss this in more detail in the following
section.



Table S8. Hyperparameter settings in our experiments.

Dataset Architecture Optimizer Epoch Batch
size

LR Weight
decay

Decay
scheduler

TR factor λ TR momentum
m

CIFAR-10/100 ResNet-20
(ReActNet-18)

SGD
400

(200) 256
1e-1

1e-4 cosine

- -
SGDT 5e-3 0.99
Adam

1e-3
- -

AdamT 5e-3 0.99

ImageNet

ResNet-18

SGD

120 256
1e-2

1e-4 cosine

- -
SGDT 1e-3 0.99
Adam

1e-4
- -

AdamT 1e-3 0.99

ReActNet-18

SGD

120 256
1e-1

0 linear

- -
SGDT 5e-4 0.99
Adam

1e-3
- -

AdamT 5e-4 0.99

MobileNetV2

SGD

120 256
1e-2

2.5e-5 cosine

- -
SGDT 1e-3 0.99
Adam

1e-4
- -

AdamT 1e-3 0.99

DeiT-T/S
AdamW

300 256 3e-4 5e-2 cosine
- -

AdamWT 1e-3 0.99

MS COCO RetinaNet w/
ResNet backbone

SGD
90K (iter.) 16 1e-2 1e-4 cosine

- -
SGDT 1e-3 0.99

-0.3 -0.2 0.1 0 0.1 0.2 0.3

(a) Latent weights w.

-2 -1 0 1

(b) Normalized latent weights wn.

-2 -1 0 1

(c) Discrete weights wd.

-2δt -δt 0 δt

(d) Quantized weights wq .

Figure S6. Visualization of the quantization process for a 2-bit weight quantizer. Solid vertical lines in (a) indicate clipping points w.r.t
latent weights, which adjust a quantization interval. Dashed vertical lines in (a) and (b) represent transition points of the quantizer and a
discretization function (i.e., a round function) w.r.t the latent weights and normalized ones, respectively. The weights with the same color
belong to the same discrete level of the quantizer. We denote by δt in (d) the distance between adjacent discrete levels of the quantizer at
the t-th iteration step. (Best viewed in color.)

-0.3 -0.2 0.1 0 0.1 0.2 0.3

(a) Quantization interval w.r.t latent
weights

(s = 0.3).

-0.3 -0.2 0.1 0 0.1 0.2 0.3

(b) Quantization interval w.r.t latent
weights

(s = 0.2).

Figure S7. Comparison between quantization intervals for the
same latent weights using different scale parameters. Solid and
dashed vertical lines represent clipping and transition points of
quantizers, respectively. The weights with the same color belong
to the same discrete level of the quantizer. (Best viewed in color.)

S5. Detailed Description of a Quantizer

In this section, we explain the quantization process for a
single quantizer. For simplicity, we consider a 2-bit weight
quantizer based on Eq. (13) of the main paper, and use latent
weights randomly drawn from the zero-mean Gaussian dis-
tribution with a standard deviation of 0.1. In the following,
we describe a detailed procedure of quantization according
to the steps described in Eqs. (1)-(3) of the main paper. We
visualize in Fig. S6 an overall quantization process for the
quantizer. First, the latent weights w (Fig. S6a) are nor-
malized and clipped by a normalization function, producing
normalized latent weights wn (Fig. S6b):

wn = clip
(γw

s
, α, β

)
, (S4)



where we set α = −2, β = 1, and γ = 2 for 2-bit weight
quantization. s is a learnable scale parameter adjusting a
quantization interval. In Fig. S6, we set s = 0.3 for the
purpose of visualization. Second, the normalized latent
weights wn are converted to discrete ones wd (Fig. S6c)
using a round function:

wd = ⌈wn⌋ . (S5)

Lastly, the discrete weights wd are fed into a de-
normalization function that applies post-scaling and outputs
quantized weights wq (Fig. S6d):

wq =
1

γ
wd. (S6)

Note that the post-scaling in Eq. (S6) is fixed, dividing
the discrete weights with a constant value γ of 2. In this
case, the distance between the adjacent discrete levels of
the quantizer (i.e., δt in Fig. S6d) is fixed for all training
iterations, i.e., δt = 0.5 for all t.

S5.1. Counting transitions
In Eq. (5) in the main paper, we count the number of
transitions by observing whether discrete weights, i.e., in-
teger numbers resulting from a round or a signum func-
tion (e.g., wd in Eq. (S5)), are changed or not after a sin-
gle parameter update. As an example, suppose a case that
a quantized weight at the t-th iteration step wt

q belongs to
the first level of the quantizer, e.g., wt

q = −2δt in Fig. S6d,
where corresponding discrete weight wt

d in Fig. S6c is −2.
If the quantized weight transits from the first to the sec-
ond level of the quantizer after a parameter update (i.e.,
wt+1

q = −δt+1), we can detect the transition using the dis-
crete weight, since it is changed from −2 to −1. Similarly,
if the quantized weight remains in the same level after a
parameter update (i.e., wt+1

q = −2δt+1), we can say that
the transition does not occur, because the discrete weight
retains the same value. Note that we could use quantized
weights wq instead of discrete weights wd for counting the
number of transitions in Eq. (5) in the main paper, only
when δt is fixed for all training iterations (e.g., as in our
quantizer in Eq. (13) of the main paper). Otherwise this
could be problematic. For example, even if a quantized
weight does not transit the discrete level after a parame-
ter update, e.g., wt

q = −2δt and wt+1
q = −2δt+1, the

quantized weight can be changed if δt and δt+1 are not
the same. This indicates that we cannot detect a transi-
tion with the condition of I

[
wt+1

q ̸= wt
q

]
, since the state-

ment (wt+1
q ̸= wt

q) could be always true, regardless of
whether a transition occurs or not, if δt+1 ̸= δt for all train-
ing iterations. Consequently, we count the number of tran-
sitions using discrete weights in Eq. (5) in the main paper,
which is valid for general quantizers.

S5.2. Quantization interval
Following the recent state-of-the-art quantization meth-
ods [7, 12, 17], we introduce in Eq. (13) of the main pa-
per (or in Eq. (S4)) a learnable scale parameter s. Given that
α, β and γ in Eq. (13) of the main paper are bit-specific con-
stants, the scale parameter s is the only factor that controls
a quantization interval (i.e., a clipping range) w.r.t quantizer
inputs. We can see from Fig. S6a that the scale parame-
ter (s = 0.3) is responsible for the positions of clipping
points w.r.t latent weights (solid vertical lines in Fig. S6a).
It also decides transition points accordingly (dashed ver-
tical lines in Figs. S6a), since the points are set by split-
ting the clipping range uniformly. This suggests that differ-
ent scale parameters would give different sets of transition
points. To verify this, we compare in Fig. S7 the quanti-
zation intervals using different scale parameters s for the
same latent weights. We can see that the quantization inter-
val shrinks if a smaller scale parameter (s = 0.2) is used,
and the transition points are altered consequently. This
again suggests that transitions could occur if the scale pa-
rameter s is changed during training, even when the latent
weights are not updated. For example, a latent weight of
−0.2 in Fig. S7a belongs to the second level of the quan-
tizer, whereas that in Fig. S7b belongs to the first level.
Within our TR scheduling technique, we attempt to control
the number of transitions by updating latent weights with a
TALR, but the transitions could also be affected by the scale
parameter. For this reason, we do not train the scale param-
eters in weight quantizers, when the TR scheduling tech-
nique is adopted, fixing the transition points of the quan-
tizers and controlling the transitions solely with the latent
weights.



References
[1] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Es-

timating or propagating gradients through stochastic neurons
for conditional computation. arXiv, 2013. 7

[2] Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen
Blankevoort, and Nojun Kwak. LSQ+: Improving low-bit
quantization through learnable offsets and better initializa-
tion. In IEEE Conf. Comput. Vis. Pattern Recog. Workshops,
pages 696–697, 2020. 1, 2

[3] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. PACT: Parameterized clipping activation
for quantized neural networks. arXiv, 2018. 1, 2

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In IEEE Conf. Comput. Vis. Pattern Recog., pages
248–255, 2009. 1, 2

[5] Timothy Dozat. Incorporating Nesterov momentum into
Adam. In Int. Conf. Learn. Represent. Workshop, 2016. 5

[6] John Duchi, Elad Hazan, and Yoram Singer. Adaptive sub-
gradient methods for online learning and stochastic opti-
mization. J. Mach. Learn. Res., 12(7), 2011. 5

[7] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S Modha.
Learned step size quantization. In Int. Conf. Learn. Rep-
resent., 2020. 1, 2, 4, 7, 9

[8] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li,
Peng Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. Differen-
tiable soft quantization: Bridging full-precision and low-bit
neural networks. In Int. Conf. Comput. Vis., pages 4852–
4861, 2019. 1, 2

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 770–778, 2016. 2, 3, 4,
5, 6, 7

[10] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E
Hopcroft, and Kilian Q Weinberger. Snapshot ensembles:
Train 1, get m for free. In Int. Conf. Learn. Represent., 2017.
6

[11] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In Int. Conf. Mach. Learn., pages 448–456,
2015. 1

[12] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son,
Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang, and
Changkyu Choi. Learning to quantize deep networks by op-
timizing quantization intervals with task loss. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 4350–4359, 2019. 1, 2,
7, 9

[13] Dohyung Kim, Junghyup Lee, and Bumsub Ham. Distance-
aware quantization. In Int. Conf. Comput. Vis., pages 5271–
5280, 2021. 4

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Int. Conf. Learn. Represent.,
2014. 2, 4, 5

[15] Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative

view: When does SGD escape local minima? In Int. Conf.
Mach. Learn., pages 2698–2707, 2018. 6

[16] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Technical report, 2009.
4, 5, 6

[17] Junghyup Lee, Dohyung Kim, and Bumsub Ham. Network
quantization with element-wise gradient scaling. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 6448–6457, 2021.
1, 2, 4, 7, 9

[18] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
Eur. Conf. Comput. Vis., pages 740–755, 2014. 2, 3

[19] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Int.
Conf. Comput. Vis., pages 2980–2988, 2017. 2, 3, 7

[20] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-
Ting Cheng. ReActNet: Towards precise binary neural net-
work with generalized activation functions. In Eur. Conf.
Comput. Vis., pages 143–159, 2020. 2, 4, 5, 7

[21] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradi-
ent descent with warm restarts. In Int. Conf. Learn. Repre-
sent., 2017. 4, 7

[22] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In Int. Conf. Learn. Represent., 2019. 5

[23] Markus Nagel, Marios Fournarakis, Yelysei Bondarenko,
and Tijmen Blankevoort. Overcoming oscillations in
quantization-aware training. In Int. Conf. Mach. Learn.,
2022. 1, 2, 6, 7

[24] Eunhyeok Park and Sungjoo Yoo. PROFIT: A novel train-
ing method for sub-4-bit MobileNet models. In Eur. Conf.
Comput. Vis., pages 430–446, 2020. 1, 6

[25] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. XNOR-Net: ImageNet classification using
binary convolutional neural networks. In Eur. Conf. Comput.
Vis., pages 525–542, 2016. 7

[26] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. MobileNetV2: Inverted
residuals and linear bottlenecks. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 4510–4520, 2018. 2

[27] T. Tieleman and G. Hinton. Lecture 6.5 - RMSProp: Di-
vide the gradient by a running average of its recent magni-
tude, COURSERA: Neural Networks for Machine Learning.
Technical report, 2012. 5

[28] Kohei Yamamoto. Learnable companding quantization for
accurate low-bit neural networks. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 5029–5038, 2021. 4, 7

[29] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li,
Bing Deng, Jianqiang Huang, and Xian-sheng Hua. Quanti-
zation networks. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 7308–7316, 2019. 1, 2

[30] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He
Wen, and Yuheng Zou. DoReFa-Net: Training low bitwidth
convolutional neural networks with low bitwidth gradients.
arXiv, 2016. 7


	Results
	Image classification
	Object detection

	Analysis
	Analysis on TR scheduling
	Comparison using a step decay scheduler
	Analysis on initial target TRs
	Comparison with different optimizers
	Training time comparison

	Discussion
	Importance of reducing average effective step size
	Comparison of update schemes for TALR
	Average effective step size

	Implementation Details
	Experimental settings

	Detailed Description of a Quantizer
	Counting transitions
	Quantization interval


