Semantic Watermarking Reinvented: Enhancing Robustness and Generation
Quality with Fourier Integrity

Supplementary Material

This supplementary document provides additional con-
text, experiments, and analyses to complement the main
paper. Sec. 7 clarifies the task setup and addresses points
of potential misunderstanding. Sec. 8 presents additional
experimental evidence that reinforces our claims, includ-
ing new results added in response to reviewer feedback.
Sec. 9 provides supplementary quantitative results and ex-
tended evaluations with alternative metrics. Sec. 10 con-
cludes with a discussion on real-world deployment consid-
erations, highlighting the compatibility of our methods with
efficient Al accelerators such as Neural Processing Units
(NPUs).

7. Clarifications and Task Overview

7.1. Scope Clarification on Tampering Robustness

Our method is designed for robust watermarking. It aims
to preserve the embedded information even when the con-
tent undergoes typical, non-malicious changes during dis-
tribution or transformation. It is not intended to detect pe-
ripheral tampering, which presents a fundamentally differ-
ent challenge outside the scope of this work. Such tamper-
ing detection requires an alternative threat model and design
considerations, often involving explicit modeling of adver-
sarial behavior. We clarify this distinction to prevent misun-
derstanding regarding the intended threat model and design
goals of our approach.

7.2. Taxonomy of Watermarking Methods

This section provides a brief overview of the terminology

used to categorize watermarking methods discussed in the

main paper. These categorizations help clarify the design
characteristics of each method and contextualize the exper-
imental results.

We group watermarking methods along the following
three axes:

* Message Type: Methods are either bitstream-based,
which embed and recover discrete bit sequences, or
pattern-based, where detection relies on matching struc-
tured watermark patterns.

¢ Embedding Strategy: Post-hoc-based methods embed
watermarks after image generation. In contrast, merged-
in-generation methods integrate watermarking into the
image synthesis process, typically within diffusion-based
models.

¢ Method Family: We use the terms classical vision for
signal processing techniques, and deep learning-based
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Figure 7. Taxonomy of watermarking methods evaluated in this
work, categorized along three dimensions.

for methods involving trainable models. Semantic water-
marking refers to recent approaches that embed informa-
tion into the image’s semantic content, often in the latent
space of generative models. Semantic methods are partic-
ularly designed to be robust against semantic-preserving
transformations such as regeneration, compression, or
cropping.

Among the semantic watermarking methods, we fur-
ther differentiate the structure of their watermark patterns.
Specifically, Gaussian radius-based patterns, such as Tree-
Ring and HSTR, use radial embeddings with Gaussian-
sampled values, whereas structured binary patterns, such
as RingID and HSQR, resemble geometric encodings of
bitstreams. Although not all of these terms are explicitly
mentioned in the main paper, we include them here to help
clarify the conceptual distinctions among recent semantic
watermarking methods.

Fig. 7 visually summarizes the classification of all meth-
ods evaluated, including the baseline that will be introduced
in Sec. 8.2.

7.3. Identification Protocol for Tree-Ring

This section outlines the identification procedure used for
the Tree-Ring baseline. Following the multi-key evaluation
protocol introduced in RingID [11], we construct a candi-
date key pool for each target capacity. Specifically, we gen-
erate a large set of key embeddings corresponding to differ-
ent watermark messages. During evaluation, the extracted
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Figure 8. Schematic illustration of the adapted identification pro-
tocol for Tree-Ring. Multiple candidate keys are generated and
the extracted watermark is matched to the closest key based on L1
distance.

pattern from a watermarked image is matched against all
keys in the pool using L distance in the embedding space,
and the message associated with the closest key is selected
as the predicted output.

Fig. 8 provides a schematic overview of this process, il-
lustrating how multiple keys are generated and compared
in the identification pipeline. This procedure enables Tree-
Ring to be evaluated under the same capacity-controlled
setting as other semantic methods. This protocol is also
applied to other Gaussian radius-based methods, including
Zodiac and the proposed HSTR.

8. Additional Experimental Evidence

8.1. Processing Time and Detection Performance

This section presents the processing time and detection per-
formance (verification and identification) of different wa-
termarking methods. As shown in Tab. 5, the merged-in-
generation approach does not introduce additional process-
ing time since the watermarking process is inherently in-
tegrated into the diffusion-based image generation. The
proposed method achieves superior detection performance
without requiring additional processing time, demonstrat-
ing its efficiency. On the other hand, post-hoc-based ap-
proaches require per-image processing time, with some
methods incurring significant computational costs. In par-
ticular, Zodiac demands several minutes per image as it re-
quires multiple rounds of diffusion-based generation and
latent vector optimization iterations for embedding the se-
mantic watermark pattern, resulting in excessive computa-
tional overhead.

8.2. Performance of Gaussian Shading as a Baseline

Following feedback received during review, this section
presents the performance of Gaussian Shading (G.Shading)
on the MS-COCO dataset. Tab. 6 shows the detection re-
sults under the same attack settings as those used in Tab. |
and Tab. 2 of the main paper. Since G.Shading is evalu-

Table 5. Evaluation of watermarking methods based on processing
time, verification, and identification performance. The best perfor-
mance for each item is highlighted with shading, while bold text
specifically marks the excessive processing time in Zodiac. Vrf.
and Idf. denote the average detection performance in verification
and identification tasks, respectively.

Methods ‘ Processing Time | ‘ Vrf. 1df.

DwtDct 0.03 (s/img) 0.637  0.083

Post-hoc DwtDctSvd 0.07 (s/img) 0.742  0.258
Based RivaGAN 0.41 (s/img) 0.857 0.482
Zodiac 7.36 (m/img) 0.962  0.000

S.Sign. 0.00 (s/img) 0.836  0.265

Tree-Ring 0.00 (s/img) 0.655 0.114

Merged in | RingID 0.00 (s/img) 0.997 0.964
Generation | “HeTR (ours) 0.00 (s/img) 0971 0.889
HSQR (ours) 0.00 (s/img) 0.997 0.985

Table 6. Verification and identification performance of Gaussian
Shading under the same attack settings as in Tab. 1 and Tab. 2 of
the main paper (MS-COCO only).

‘ Verification ‘ Identification
AUCKTYPE | G Ghading HSTR HSQR | G.Shading HSTR HSQR
No Attack 1000 1000 1000 | 1000 1000 1.000
Bright. 0962 0899 0991 | 0522 0714 0958
Cont. 1000 1.000 1.000 | 0998 0999  1.000
JPEG 0992 0994 1000 | 0724 088 0994
Blur 1000 1000 1000 | 0999 0998  1.000
Noise 0997 0806 0983 | 0919 0460 0901
BM3D 0999 0999 1.000 | 0926 0972 0999
VAE-B 0982 0973 0992 | 0636 0833 0980
VAE-C 0987 0982 1000 | 0657 0831 0987
Diff. 0999 0997 1000 | 0827 0971 0999
cC. 0998 1000 1.000 | 0658 1000 1.000
RC. 1000 1000 1000 | 098  1.000 1.000
Avg | 0993 0971 0997 | 0821 0889 0.5

Table 7. Normality assessment of latent distributions (1,000 sam-
ples). HSTR better preserves Gaussianity than Tree-Ring, as
shown by standard deviation, KS p-value, and failure rate.

Methods | Mean Std. Dev. | KSp-valuet KS failure rate |
Tree-Ring 0.0004  0.9620 0.2404 0.234
HSTR (ours) -0.0003  1.0000 0.4227 0.071

ated as a bitstream-based setting, we report Bit Accuracy
for verification and Perfect Match Rate for identification
as the detection metrics. In addition to detection perfor-
mance, we also evaluate the generative quality as a supple-
ment to Tab. 3. G.Shading achieves an FID of 24.778 and a
CLIP score of 0.330, which are comparable to those of our
method HSQR (FID: 24.895, CLIP: 0.330).

8.3. Preservation of Gaussianity

We assess the normality of 1,000 latent samples, as reported
in Tab. 7. Compared to Tree-Ring, HSTR more closely
aligns with NV(0,1) in terms of standard deviation and the



Table 8. Ablation study on the impact of Hermitian SFW and
center-aware embedding in terms of robustness and generative
quality.

Case | SFW Center | Signal. Regen. Crop. Avg | FID] CLIPT

A X X 0.136  0.070 0.021 0.114 | 26.418 0.326
B v X 0.856 0.812 0.374 0.777 | 25.071  0.329
C ' v 0.838 0.878 1.000 0.889 | 25.062  0.329

Table 9. Average PSNR, SSIM, and LPIPS values for each of the
11 attack types, computed over 1,000 MS-COCO generated im-
ages. These values reflect the typical level of distortion introduced
by each attack.

Attack Type | PSNR T SSIM 1 LPIPS |

Bright. 28.421 0.558 0.383
Cont. 28.015 0.824 0.092
JPEG 32.909 0.898 0.066
Blur 34.419 0.902 0.023
Noise 44.926 0.894 0.113
BM3D 35.648 0.910 0.074
VAE-B 33.594 0.884 0.093
VAE-C 33.950 0.896 0.083
Diff. 31.224 0.795 0.109
C.C. 30.959 0.503 0.431
R.C. 33.164 0.702 0.298

Kolmogorov—Smirnov (KS) test. This includes higher p-
values and lower failure rates, indicating stronger statistical
consistency.

8.4. Disentangling the Contributions

We conduct an ablation analysis to examine the individ-
ual contributions of each component, with the results pre-
sented in Tab. 8. From Tree-Ring (A), applying SFW (B)
improves frequency integrity, which enhances robustness to
signal and regeneration attacks as well as generative quality.
Adding center-aware embedding (C), which corresponds to
the proposed HSTR method, significantly enhances robust-
ness to cropping attacks. Note that Signal., Regen., and
Crop. denote the average identification accuracy across
the respective attack types. These results suggest that both
components are necessary and complementary.

8.5. Post-Attack Image Quality Assessment

To complement the robustness evaluation, we provide an
assessment of image quality degradation caused by various
attacks. Tab. 9 reports the average PSNR, SSIM, and LPIPS
values computed over 1,000 MS-COCO generated images
after applying each of the 11 attack types used in the main
paper. We report PSNR and SSIM to measure pixel-level
and structural similarity respectively, and include LPIPS to
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Figure 9. Visual examples of all 11 attacks applied to a single
clean image. The figure illustrates the perceptual effects of each
attack type relative to the original input.

capture perceptual quality more closely aligned with human
judgment. These metrics help ensure that attack strengths
remain realistic and consistent across evaluation scenarios.

In addition, Fig. 9 visualizes the effect of all 11 attacks
on a single clean image, illustrating the diverse perceptual
degradation introduced by each attack. Notably, the three
examples in the third row of the figure, corresponding to
regeneration attacks, appear visually high-quality from a
classical signal processing perspective. Despite the mini-
mal perceptual degradation, many baseline methods fail to
maintain correct detection under these attacks, as shown in
Tab. 1 (verification performance). This suggests that the
attack strength is not weak, even if visual quality remains
high. It also highlights that improving robustness to re-
generation attacks remains a critical challenge, both for our
method and for future research in this area.



Table 10. Verification and identification performance of semantic
watermarking methods under diffusion-based regeneration attacks
with varying noise steps. The results are based on 1,000 images
generated from the MS-COCO dataset. Larger noise steps indicate
stronger attack strength.

| Noise Step
Task  Methods 750 60 100 140 180
Tree-Ring | 0701 0543 0404 0317 0262
vy HSTR(ours) | 1000 0997 0998 0987 0980
RingID 1000 1.000  1.000 1.000  1.000
HSQR (ours) | 1.000 1000 1.000 1.000  1.000
Tree-Ring | 0.144 0054 0034 0014 0012
i HSTR(us) | 0999 0971 0926 0868 0781
RingID 1000 0998 0995 0993 0.990
HSQR (ours) | 0999 0999 0999 0998 0.997

8.6. Ablation on Regeneration Strength

To further investigate the robustness of our method against
regeneration attacks, we conduct an ablation study by vary-
ing the noise strength in the diffusion-based regeneration
attack. This experiment addresses the concern that the re-
generation attacks used in the main paper may have been
too weak compared to pixel-level Gaussian noise attacks, a
typical signal processing perturbation.

Following the setup of Zhao et al. [56], the attack applies
additive noise in the latent space using a formulation similar
to the forward process in DDPM [25]:

a(t*)zo + /1 — a(t*)e

Here, zy denotes the encoded latent representation of the
image, and e is standard Gaussian noise. The variable ¢*
indicates the noise step that controls attack strength. The
attacked image is then regenerated through the denoising
process.

Tab. 10 reports the verification and identification perfor-
mance of semantic watermarking methods that follow the
merged-in-generation scheme, evaluated under varying at-
tack steps t* € {20, 60, 100, 140, 180}. Following the main
paper, verification is measured by TPR@ 1%FPR and iden-
tification by accuracy, reported as Perfect Match Rate. De-
tection performance progressively decreases as the noise
step increases, indicating a corresponding increase in attack
strength. A higher noise step results in lower detection per-
formance, suggesting a stronger perturbation effect. The
proposed HSQR achieves the most robust detection per-
formance under these stronger attack levels. Focusing on
Gaussian radius-based methods (Tree-Ring and HSTR), we
observe that the proposed HSTR demonstrates significantly
improved robustness over Tree-Ring. This highlights the
effectiveness of the Hermitian SFW component under chal-
lenging regeneration scenarios.

Zpx

9. Supplementary Experimental Results

9.1. Reporting Bit Accuracy Results

In the main paper, we use Bit Accuracy for verification and
Perfect Match Rate for identification to evaluate the detec-
tion performance of bitstream-based approaches in Sec. 5.2.
Following feedback received during review, we acknowl-
edge that Bit Accuracy offers a more fine-grained perspec-
tive, particularly in high-capacity or multi-user settings. To
complement the original results, we report unified detection
performance in terms of Bit Accuracy across all methods
in Tab. 11. Here, we adopt a strict evaluation criterion for
the semantic methods: if the predicted pattern does not ex-
actly match the ground-truth pattern, the Bit Accuracy for
that sample is set to zero. We believe these results provide a
more comprehensive view of overall detection performance.

9.2. Further Results for Verification

This section provides supplementary results for semantic

methods on the verification task introduced in Sec. 5.2.

» Fig. 10, Fig. 11, and Fig. 12 illustrate the Receiver Op-
erating Characteristic (ROC) curves for different datasets
under various attack scenarios.

* Tab. 12 and Tab. 13 summarize the corresponding Area
Under the Curve (AUC) values and maximum accuracy
for each dataset.

9.3. Numerical Results for Ablation Study

This section presents the numerical data corresponding to

the figures in Sec. 5.3 (Ablation Study).

» Tab. 14 provides detailed results for the ablation study on
Hermitian SFW cases presented in Tab. 4.

* Tab. 15 shows the identification accuracy under center
crop and random crop attacks at different crop scales, cor-
responding to Fig. 5.

» Tab. 16 presents the average identification accuracy
across clean conditions and 11 attack scenarios for dif-
ferent watermarking capacities, as shown in Fig. 6. For
each capacity, we report its associated embedding density,
computed based on a fixed image resolution of 512 x 512.
This supplements the capacity-related analysis by mak-
ing the notion of embedding density explicit, as suggested
during the review.

9.4. Qualitative Analysis for Semantic Methods

This section presents qualitative results for semantic wa-
termarking methods following the merged-in-generation
scheme, showcasing generated images from the same
prompt, as illustrated in Fig. 13. In the case of RingID,
excessive emphasis on detection performance at the ex-
pense of image quality results in imbalanced trade-offs,
causing noticeable ring-like artifacts in the generated im-
ages. This phenomenon aligns with the low CLIP score



Table 11. Unified detection performance reported in terms of Bit Accuracy for all methods, including re-evaluation of semantic watermarks.

| | No Attack Signal Processing Attack Regeneration Attack Cropping Attack |
Dataset: Method. A
aasets o MEROS 1 Clean Bright.  Cont.  JPEG  Blur  Noise BM3D  VAE-B  VAE-C Diff. ~CC. RC | ¢
DwtDct 0.863 0.572 0.522 0.516 0.677 0.859 0.532 0.523 0.521 0.519 0.729 0.810 0.637
DwtDctSvd 1.000 0.555 0.473 0.602 1.000 1.000 0.784 0.648 0.596 0.644 0.744 0.861 0.742
RivaGAN 0.999 0.862 0.986 0.821 0.998 0.969 0.934 0.570 0.552 0.608 0.991 0.995 0.857
S.Sign. 0.995 0.894 0.978 0.806 0.911 0.721 0.838 0.717 0.715 0.478 0.987 0.991 0.836
MS-COCO Tree-Ring 0.303 0.087 0.207 0.072 0.256 0.030 0.162 0.083 0.072 0.054 0.009 0.033 0.114
Zodiac 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
HSTR (ours) 1.000 0.714 0.999 0.886 0.998 0.460 0.972 0.833 0.831 0.971 1.000 1.000 0.889
RingID 1.000 0.875 1.000  0.975 1.000 0919 0.996 0.978 0.970 0998  0.874 0.978 0.964
HSQR (ours) 1.000 0.958 1.000 0.994 1.000 0.901 0.999 0.980 0.987 0.999 1.000 1.000 0.985
DwtDct 0.819 0.557 0.516 0.506 0.685 0.822 0.530 0.513 0.512 0.509 0.723 0.794 0.624
DwtDctSvd 1.000 0.537 0.459 0.610 0.999 0.998 0.859 0.659 0.620 0.623 0.743 0.860 0.747
RivaGAN 0.991 0.823 0.963 0.810 0.988 0.961 0.915 0.572 0.535 0.567 0.980 0.983 0.841
S.Sign. 0.994 0.899 0.967 0.769 0.888 0.742 0.809 0.677 0.671 0.493 0.983 0.990 0.824
SD-Prompts Tree-Ring 0.288 0.094 0.189 0.051 0.235 0.034 0.159 0.079 0.076 0.056 0.012 0.041 0.110
Zodiac 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
HSTR (ours) 1.000 0.655 0.999 0.863 0.999 0.555 0.980 0.846 0.847 0.973 1.000 1.000 0.893
RingID 1.000 0.885 1.000 0.976 0.998 0.886 0.993 0.980 0.973 0.995 0.876 0.981 0.962
HSQR (ours) 1.000 0.930 1.000  0.994 1.000  0.942 0.999 0.991 0.997 1.000 1.000 1.000 0.988
DwtDct 0.842 0.563 0.515 0.509 0.672 0.829 0.526 0.513 0.514 0.512 0.723 0.801 0.627
DwtDctSvd 0.998 0.558 0.463 0.593 0.997 0.995 0.830 0.658 0.608 0.621 0.742 0.860 0.744
RivaGAN 0.987 0.839 0.960 0.790 0.985 0.937 0.893 0.553 0.518 0.556 0.974 0.979 0.831
S.Sign. 0.990 0.890 0.967 0.787 0.889 0.726 0.819 0.690 0.687 0.496 0.981 0.986 0.826
DiffusionDB Tree-Ring 0.280 0.095 0.190 0.059 0.233 0.037 0.145 0.081 0.072 0.050 0.013 0.039 0.108
Zodiac 0.000 0.000 0.000  0.000  0.000  0.000 0.000 0.000 0.000 0.000  0.000 0.000 0.000
HSTR (ours) 0.996 0.721 0.992 0.854 0.989 0.563 0.958 0.830 0.821 0.952 0.996 0.996 0.889
RingID 1.000 0.895 1.000 0.947 0.996 0.871 0.992 0.968 0.958 0.990 0.875 0.984 0.956
HSQR (ours) 1.000 0.954 1.000 0.988 1.000 0.906 0.998 0.982 0.991 0.994 1.000 1.000 0.984
Table 12. AUC values of semantic methods for verification, evaluated across different datasets and attack scenarios.
| | No Attack Signal Processing Attack Regeneration Attack Cropping Attack |
Dataset: Method. A
aasets o MO 1 Clean Bright.  Cont.  JPEG  Blur  Noise BM3D  VAE-B  VAE-C Diff. ~CC. RC | ¢
Tree-Ring 0.997 0.895 0.990 0.923 0.994 0.870 0.977 0.912 0.924 0.921 0913 0.962 0.940
Zodiac 1.000 0.978 1.000 0.998 1.000 0.978 1.000 0.989 0.996 0.997 0.999 1.000 0.995
HSTR (ours) 1.000 0.992 1.000 1.000 1.000  0.986 1.000 0.995 0.999 1.000 1.000 1.000 0.998
MS-COCO
RingID 1.000 0.999 1.000 1.000 1.000 0.998 1.000 0.994 1.000 1.000 1.000 1.000 0.999
HSQR (ours) 1.000 0.999 1.000 1.000 1.000 0.996 1.000 0.997 1.000 1.000 1.000 1.000 0.999
Tree-Ring 0.995 0.892 0.985 0911 0.991 0.875 0.980 0.915 0.928 0911 0.906 0.957 0.937
Zodiac 1.000 0.940 1.000 0.998 1.000 0.977 1.000 0.985 0.998 0.995 1.000 1.000 0.991
HSTR (ours) 1.000 0.979 1.000 1.000 1.000 0.986 1.000 0.996 0.999 1.000 1.000 1.000 0.997
SD-Prompts
RingID 1.000 0.997 1.000 1.000 1.000 0.999 1.000 0.998 1.000 1.000 1.000 1.000 1.000
HSQR (ours) 1.000 0.997 1.000 1.000 1.000 0.997 1.000 0.999 1.000 1.000 1.000 1.000 0.999
Tree-Ring 0.993 0.894 0.983 0.902 0.988 0.856 0.971 0.905 0912 0.900 0.904 0.955 0.930
Zodiac 0.997 0.958 0.997 0.990 0.997 0.942 0.996 0.975 0.984 0.983 0.993 0.997 0.984
P HSTR (ours) 1.000 0.988 1.000 0.999 1.000 0.974 1.000 0.995 0.998 1.000 1.000 1.000 0.996
DiffusionDB
RingID 1.000 0.999 1.000 1.000 1.000  0.994 1.000 0.997 1.000 1.000 1.000 1.000 0.999
HSQR (ours) 1.000 0.997 1.000 1.000 1.000 0.994 1.000 0.999 1.000 1.000 1.000 1.000 0.999

(0.324) reported in Tab. 3, indicating degraded text-image
alignment. Furthermore, for Tree-Ring, which employs
a Gaussian radius-based watermark pattern, the proposed
method HSTR preserves Fourier integrity while embedding
the same pattern. As a result, HSTR improves the CLIP
score from 0.326 to 0.329, demonstrating its ability to en-
hance the quality of diffusion-generated images.

To further assess perceptual quality, we conduct a Mean

Opinion Score (MOS) study based on human evaluations.
For each of 10 prompts, we present the corresponding im-
ages generated by Tree-Ring, RingID, HSTR, and HSQR
as a group, and ask 10 human evaluators to rate each im-
age individually on a scale from 1 (very poor) to 5 (excel-
lent). Participants assign a separate score to each image
based on its visual quality. The resulting average MOS
scores are 2.82 for RingID, 3.54 for Tree-Ring, 3.69 for



Table 13. Maximum verification accuracy for semantic methods across different datasets and attack scenarios.

| | No Attack Signal Processing Attack Regeneration Attack Cropping Attack |
Datasets | Methods "0 Bright. Cont. JPEG Bl Noise BM3D VAEB VAEC Diff. CC.  RC | ¢
Tree-Ring 0.979 0.828 0959  0.852  0.968 0.808 0.930 0.846 0.856 0.849  0.850 0911 0.886
Zodiac 0.998 0.931 0.998 0.984  0.998 0.941 0.998 0.968 0.977 0983  0.992 0.997 0.980
HSTR (ours) 1.000 0.963 1.000  0.993 1.000 0.943 0.999 0.982 0.988 0.997 1.000 1.000 0.989
MS-COCO
RingID 1.000 0.991 1.000 1.000 1.000 0.990 1.000 0.996 1.000 1.000 1.000 1.000 0.998
HSQR (ours) 1.000 0.992 1.000 1.000 1.000 0.988 1.000 0.996 1.000 1.000 1.000 1.000 0.998
Tree-Ring 0.973 0.822 0.951 0.835 0.962 0.805 0.933 0.843 0.857 0.838  0.847 0.898 0.880
Zodiac 0.998 0.888 0999 0986  0.999 0.954 0.998 0.967 0.983 0978  0.994 0.998 0.978
HSTR (ours) 1.000 0.939 1.000  0.992 1.000 0.945 0.998 0.989 0.989 0.998 1.000 1.000 0.987
SD-Prompts
RingID 1.000 0.984 1.000 1.000 1.000  0.991 1.000 0.998 1.000 1.000 1.000 1.000 0.998
HSQR (ours) 1.000 0.980 1.000  0.999 1.000 0.993 1.000 0.998 1.000 1.000 1.000 1.000 0.997
Tree-Ring 0.968 0.823 0.944  0.833 0.952 0.795 0.919 0.839 0.844 0.827  0.843 0.897 0.874
Zodiac 0.993 0.903 0.991 0964  0.992 0.920 0.989 0.951 0.964 0952  0.981 0.991 0.966
oo HSTR (ours) 0.999 0.951 0.998 0.988  0.997 0.917 0.994 0.980 0.982 0992  0.999 0.999 0.983
DiffusionDB
RingID 1.000 0.991 1.000  0.999 1.000 0.978 1.000 0.998 1.000 1.000 1.000 1.000 0.997
HSQR (ours) 1.000 0.987 1.000  0.999 1.000 0.983 1.000 0.997 0.999 1.000 1.000 1.000 0.997

Table 14. Detailed verification and identification performance for Hermitian SFW ablation cases, supplementing Tab. 4 in the main paper.

‘ No Attack Signal Processing Attack Regeneration Attack Cropping Attack ‘
Task  Case . . . Avg
| Clean Bright. Cont. JPEG Blur Noise BM3D VAE-B VAE-C Diff. CC. RC. |
A 0.957 0452 0900 0.548 0934 0412 03815 0.501 0.536 0509 0.734 0543 0.653
Vit B 1.000 0.601 1.000 0.772 1.000 0.588  0.977 0.737 0.774  0.550  0.853 0.810 0.805
C 1.000 0.769 1.000 0975 1.000 0.627  0.991 0.931 0.920 1.000  1.000  0.990 0.936
D 1.000 0.899 1.000 0.994 1.000 0.806  0.999 0.981 0.982 1.000  1.000  0.997 0.971
A 0.303 0.090 0207 0.072 0256 0.030 0.162 0.084 0.072  0.009 0.033 0.054 0.114
1df B 0.982 0320 0.854 0.268 0904 0.106  0.624 0.306 0.293 0.018 0.109  0.202 0.416
7 C 0.997 0.505 0984 0.687 0980 0.212  0.837 0.631 0.613 1.000  1.000  0.852 0.775
D 1.000 0.714 0999 0.886 0998 0.460 0972 0.841 0.831 1.000 1.000  0.971 0.889

Table 15. Identification accuracy under center crop and random
crop attacks at different crop scales. These results correspond to
Fig. 5

Table 16. Average identification accuracy across watermark mes-
sage capacities. The values are computed over all attack scenarios
for semantic methods. These results correspond to Fig. 6

Center Crop Attack

| Crop Scale
Methods
T o2 03 04 05 06 07 08
RingID 0153 0369 0647 0874 0934 0974  0.992
HSTR (ours) | 0.818 0997 1000 1000  1.000 1000  1.000
HSQR (ours) | 0555 0998  1.000 1000 1.000 1000  1.000
Random Crop Attack
| Crop Scale
Methods
OB 02 03 04 05 06 07 08
RingID 0496 0559 0774 0919 0971 0970 0997
HSTR (ours) | 0489 0903 0992 0999 1000 1000  1.000
HSQR (ours) | 0955 0999 0999  1.000 1000  1.000  1.000

HSQR, and 3.86 for HSTR. While HSTR ranked highest
in MOS, HSQR remains strong across both human ratings
and CLIP/FID metrics, showing consistent perceptual qual-
ity overall.

‘ Embedding Density (10~° bpp)

Methods

RO 220 305 381 420 458 496
Tree-Ring | 0338 0271 036 0114 0083  0.064
Zodiac 0027 0000 0000 0000 0000 0.000
HSTR (ours) | 0960 0936 0913 0889 0881 0862
RingID 0995 0989 0978 0964 0940  0.888
HSQR (ours) | 0.993 0990 0987 0985 0984 098

10. Outlook and Deployment Considerations

The growing accessibility of LDMs has enabled an un-
precedented scale of generative content creation. As syn-
thetic media becomes ubiquitous, embedding provenance
signals at generation time, rather than through costly post-
processing, will become increasingly vital.

Meanwhile, modern NPUs are optimized for low-power,
high-throughput Al inference. These accelerators favor
low-precision formats such as FP16 or INTS, aligning well
with the inference-only use of lightweight generative mod-



els like Stable Diffusion.

Our proposed watermarking methods, HSTR and HSQR,
are inherently compatible with this direction. They require
no additional training, integrate seamlessly into the genera-
tion pipeline, and avoid post-hoc overhead. This merged-in-
generation design, combined with semantic robustness and
compatibility with quantized LDMs, positions our approach
as a strong candidate for deployment in scalable, energy-
efficient environments.
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Figure 10. ROC curve for verification performance on MS-COCO under different attack scenarios.



TPR

TPR

TPR

TPR

TPR

TPR

TPR

TPR

TPR

TPR

TPR

TPR

Clean - Tree-Ring Clean - Zodiac Clean - RingID Clean - HSTR Clean - HSQR
1.0 — 1.0 — 1.0 — 1.0 — 1.0 —
0.5 1 — AUC = 0.99 0.5 1 o — AlC = 1.00 0.5 A1 — AUC = 1.00 0.5 1 — AUC = 1.00 0.5 1 o — AUC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1. 0.0 0.5 1.
Brightness - Tree-Ring Brightness - Zodiac Brightness - RinglD Brightness - HSTR Brightness - HSQR
1.0 == 1.0 — 1.0 - 1.0 — - 1.0 -
0.5 A1 —_ AUC = 0.89 0.5 A —_ AUC = 0.94 0.5 —_ AUC = 1.00 0.5 1 —_ AUC = 0.98 0.5 A —_ AUC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1. 0.0 0.5 1.
Contrast - Tree-Ring Contrast - Zodiac Contrast - RingID Contrast - HSTR Contrast - HSQR
1.0 = — 1.0 — 1.0 — 1.0 — 1.0 -
0.5 1 — AUC = 0.99 0.5 1 — AGC = 1.00 0.5 A1 — AUC = 1.00 0.5 1 — AUC = 1.00 0.5 1 — AUC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1. 0.0 0.5 1.
JPEG - Tree-Ring JPEG - Zodiac JPEG - RingID JPEG - HSTR JPEG - HSQR
1.0 — 1.0 - 1.0 - 1.0 - 1.0 -
0.5 A1 —_ AUC = 091 0.5 A1 —_ AUC = 1.00 0.5 —_ AUC = 1.00 0.5 1 —_ AUC = 1.00 0.5 A —_ AUC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5
Blur - Tree-Ring Blur - Zodiac Blur - RingID Blur - HSTR Blur - HSQR
1.0 — 1.0 — 1.0 — 1.0 — 1.0 —
0.5 1 — AUC = 0.99 0.5 1 — AGC = 1.00 0.5 A1 — AUC = 1.00 0.5 1 — AUC = 1.00 0.5 1 — AGC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1. 0.0 0.5 1.
Noise - Tree-Ring Noise - Zodiac Noise - RingID Noise - HSTR Noise - HSQR
1.0 = 1.0 — 1.0 - 1.0 - 1.0 -
0.5 A1 —_ AUC = 0.87 0.5 A1 —_ AUC = 0.98 0.5 —_ AUC = 1.00 0.5 1 —_ AUC = 0.99 0.5 A —_ AUC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1. 0.0 0.5 1.
BM3D - Tree-Ring BM3D - Zodiac BM3D - RingID BM3D - HSTR BM3D - HSQR
1.0 — — 1.0 — 1.0 — 1.0 — 1.0 —
0.5 1 — AUC = 0.98 0.5 1 —_ AUC = 1.00 0.5 1 — AUC = 1.00 0.5 1 — AUC = 1.00 0.5 1 —_ AUC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1. 0.0 0.5 1.
VAE-B - Tree-Ring VAE-B - Zodiac VAE-B - RingID VAE-B - HSTR VAE-B - HSQR
1.0 — 1.0 — 1.0 - 1.0 - 1.0 -
0.5 A1 —_ AUC = 0.92 0.5 A1 —_ AUC = 0.99 0.5 —_ AUC = 1.00 0.5 1 —_ AUC = 1.00 0.5 A —_ AUC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1. 0.0 0.5 1.
VAE-C - Tree-Ring VAE-C - Zodiac VAE-C - RingID VAE-C - HSTR VAE-C - HSQR
1.0 + — 1.0 — 1.0 — 1.0 — 1.0 —
0.5 1 —_ AUC = 0.93 0.5 1 —_ AUC = 1.00 0.5 1 —_ AUC = 1.00 0.5 1 —_ AUC = 1.00 0.5 1 —_ AUC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1. 0.0 0.5 1.
CC - Tree-Ring CC - Zodiac CC - RingID CC - HSTR CC - HSQR
1.0 — 1.0 — 1.0 — 1.0 — 1.0 —
0.5 1 — AUC = 0.1 0.5 1 o — AUC = 0.99 0.5 1 — AUC = 1.00 0.5 1 — AUC = 1.00 0.5 1 o — AUC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1. 0.0 0.5 1.
RC - Tree-Ring RC - Zodiac RC - RingID RC - HSTR RC - HSQR
1.0 + — 1.0 — 1.0 — 1.0 — 1.0 —
0.5 A1 —_ AUC = 0.91 0.5 A —_ AUC = 1.00 0.5 —_ AUC = 1.00 0.5 1 —_ AUC = 1.00 0.5 A —_ AUC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5
Diff - Tree-Ring Diff - Zodiac Diff - RingID Diff - HSTR Diff - HSQR
1.0 — 1.0 — 1.0 — 1.0 — 1.0 —
0.59 — Alc-os96 0.5 1 o — Al = 1.00 0.5 1 — AUC = 1.00 0.5 1 — AUC = 1.00 0.5 1 o — AU = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5
FPR FPR FPR FPR FPR

Figure 11. ROC curve for verification performance on SD-Prompts under different attack scenarios.

1.0

1.0

1.0



TPR

TPR

TPR

TPR

TPR

TPR

TPR

TPR

TPR

TPR

TPR

TPR

Clean - Tree-Ring Clean - Zodiac Clean - RingID Clean - HSTR Clean - HSQR
1.0 — 1.0 — 1.0 — 1.0 — 1.0 —
0.5 1 — AUC = 0.99 0.5 1 o — AlC = 1.00 0.5 A1 — AUC = 1.00 0.5 1 — AUC = 1.00 0.5 1 o — AUC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Brightness - Tree-Ring Brightness - Zodiac Brightness - RinglD Brightness - HSTR Brightness - HSQR
1.0 — 1.0 — 1.0 - 1.0 — - 1.0 —=
0.5 A1 —_ AUC = 0.89 0.5 A —_ AUC = 0.96 0.5 —_ AUC = 1.00 0.5 1 —_ AUC = 0.99 0.5 A —_ AUC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Contrast - Tree-Ring Contrast - Zodiac Contrast - RingID Contrast - HSTR Contrast - HSQR
1.0 — 1.0 — 1.0 — 1.0 — 1.0 —
0.5 1 — AUC = 0.98 0.5 1 — AGC = 1.00 0.5 A1 — AUC = 1.00 0.5 1 — AUC = 1.00 0.5 1 — AUC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
JPEG - Tree-Ring JPEG - Zodiac JPEG - RingID JPEG - HSTR JPEG - HSQR
1.0 — 1.0 - 1.0 - 1.0 - 1.0 -
0.5 A1 —_ AUC = 0.90 0.5 A1 —_ AUC = 0.99 0.5 —_ AUC = 1.00 0.5 1 —_ AUC = 1.00 0.5 A —_ AUC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Blur - Tree-Ring Blur - Zodiac Blur - RingID Blur - HSTR Blur - HSQR
1.0 — 1.0 — 1.0 — 1.0 — 1.0 —
0.5 1 — AUC = 0.99 0.5 1 — AGC = 1.00 0.5 A1 — AUC = 1.00 0.5 1 — AUC = 1.00 0.5 1 — AGC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Noise - Tree-Ring Noise - Zodiac Noise - RingID Noise - HSTR Noise - HSQR
1.0 —= 1.0 — — 1.0 - 1.0 — 1.0 — -
0.5 1 —_ AUC = 0.86 0.5 A1 —_ AUC = 0.94 0.5 —_ AUC = 0.99 0.5 1 —_ AUC = 0.97 0.5 A —_ AUC = 0.99
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
BM3D - Tree-Ring BM3D - Zodiac BM3D - RingID BM3D - HSTR BM3D - HSQR
1.0 44— — 1.0 — 1.0 — 1.0 — 1.0 —
0.5 1 — AUC = 0.97 0.5 1 —_ AUC = 1.00 0.5 1 — AUC = 1.00 0.5 1 — AUC = 1.00 0.5 1 —_ AUC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
VAE-B - Tree-Ring VAE-B - Zodiac VAE-B - RingID VAE-B - HSTR VAE-B - HSQR
1.0 — 1.0 A — 1.0 - 1.0 - 1.0 -
0.5 1 —_ AUC = 091 0.5 A1 —_ AUC = 0.98 0.5 —_ AUC = 1.00 0.5 1 —_ AUC = 0.99 0.5 A —_ AUC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
VAE-C - Tree-Ring VAE-C - Zodiac VAE-C - RingID VAE-C - HSTR VAE-C - HSQR
1.0 + — 1.0 — 1.0 — 1.0 — 1.0 —
0.5 1 —_ AUC = 0.91 0.5 1 —_ AUC = 0.98 0.5 1 —_ AUC = 1.00 0.5 1 —_ AUC = 1.00 0.5 1 —_ AUC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
CC - Tree-Ring CC - Zodiac CC - RingID CC - HSTR CC - HSQR
1.0 = 1.0 A — 1.0 — 1.0 — 1.0 —
0.5 1 — AUC = 0.90 0.5 1 o — AUC = 0.98 0.5 1 — AUC = 1.00 0.5 1 — AUC = 1.00 0.5 1 o — AUC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
RC - Tree-Ring RC - Zodiac RC - RingID RC - HSTR RC - HSQR
1.0 + — 1.0 — 1.0 — 1.0 — 1.0 —
0.5 A1 —_ AUC = 0.90 0.5 A —_ AUC = 0.99 0.5 —_ AUC = 1.00 0.5 1 —_ AUC = 1.00 0.5 A —_ AUC = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Diff - Tree-Ring Diff - Zodiac Diff - RingID Diff - HSTR Diff - HSQR
1.0 — 1.0 — 1.0 — 1.0 — 1.0 —
0.59 — Alc-oss 0.5 1 o — Al = 1.00 0.5 1 — AUC = 1.00 0.5 1 — AUC = 1.00 0.5 1 o — AU = 1.00
0.0 += T 0.0 += T 0.0 += T 0.0 += T 0.0 += T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
FPR FPR FPR FPR FPR

Figure 12. ROC curve for verification performance on DiffusionDB under different attack scenarios.
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Figure 13. Qualitative comparison of semantic watermarking methods following the merged-in-generation scheme. The generated images
are produced from the same prompt, illustrating the visual differences across different watermarking approaches.





