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Supplementary Material

In this supplementary document, we present additional
results and analyses, including the following:

• Results on a large-scale diffusion model (Section A).
• Evaluation on mixed-precision quantization method (Sec-

tion B).
• Ablation studies on bit selection criteria (Section C).
• Ablation studies on bit precision options (Section D).
• Batch inference scenario analysis (Section E).
• Memory requirement analysis (Section F).
• Details on the structure and implementation of the T2Q

module (Section G).
• Implementation details for ablation studies (Section H).
• Quantization sensitivity analysis for each layer (Sec-

tion I).
• Additional visual comparison results.(Section J).

A. Results on a Large-Scale Diffusion Model

We conducted experiments using SDXL [6] with the Eu-
ler scheduler as the base model to evaluate the effective-
ness of QLIP on a large-scale diffusion model. As shown
in Table S1, QLIP demonstrated significant improvements
in computational efficiency while maintaining competitive
image quality.

For the COCO2017 dataset, QLIP effectively reduced
the computational complexity of the baseline diffusion
quantization methods. Specifically, Q-diffusion+QLIP
(W4A{8,16,32}) demonstrated a significant reduction in
FAB while maintaining comparable FID and sFID scores to
Q-diffusion (W4A16). This result indicates that QLIP opti-
mizes the bit precision selection effectively, reducing com-
putational overhead without compromising image quality.
The results on the Conceptual Captions dataset exhibited
similar trends to those observed with COCO2017. These
results suggest that QLIP generalizes well to large-scale dif-
fusion models.

B. Evaluation on Mixed-Precision Method

We compared with PCR [7], a recent mixed-precision
quantization method, using FLUX [1] as the base model.
For image quality, we reported ImageReward [8] and
PickScore [4], using 500 prompts from COCO2017. As
shown in Table S2, applying our QLIP to PCR further
improved performance by achieving higher quality scores
while also reducing overall bit usage, demonstrating its ef-
fectiveness even on the recent diffusion model FLUX.

COCO2017

Method FAB↓ FID↓ sFID↓ CLIP Score↑

SDXL [6] 32.00 23.75 65.85 0.3180

Q-diffusion [5] 16.00 28.46 67.54 0.3178
+QLIP 12.68 28.16 66.31 0.3177

Conceptual Captions

Method FAB↓ FID↓ sFID↓ CLIP Score↑

SDXL [6] 32.00 19.25 47.72 0.3085

Q-diffusion [5] 16.00 22.23 49.57 0.3075
+QLIP 11.34 21.95 48.61 0.3074

Table S1. Quantitative comparisons at a resolution of 768×768
using SDXL [6]. For the bit precision options, W4A16 was used
for Q-diffusion and W4A{8,16,32} were used for QLIP.

Method FAB↓ Image Reward↑ Pick Score↑

FLUX [1] 16.00 1.1013 23.07

PCR [7] 9.60 0.9986 22.97
+QLIP 7.92 1.0214 23.01

Table S2. Quantitative comparisons with the mixed-precision
quantization method PCR, using FLUX as the baseline model.
Evaluation was conducted on 500 prompts from the COCO2017
dataset at a resolution of 1024×1024. For the bit precision options,
W4A{8,16} was used for PCR, and W4A{6,8,16} were used for
QLIP.

Bit Selection Strategy FAB ↓ FID ↓
Image Complexity 14.86 31.09
Prompt Length 12.79 31.49

Image Quality (QLIP) 12.14 30.01

Table S3. Comparison of bit selection criteria.

C. Ablation Studies on Bit Selection Criteria

We conducted experiments to explore alternative criteria
for determining bit precision, replacing the predicted im-
age quality used in our T2Q module. Specifically, we in-
vestigated two alternative metrics: image complexity and
prompt length, as shown in Table S3.

Image complexity has been effectively used in other
tasks, such as super-resolution, as a criterion for dynamic



Bit-Options FAB↓ FID↓

{8,16} 10.51 24.78
{8,16,32} 10.58 24.72
{6,8,16,32} 9.24 25.22

Table S4. Ablation study on bit precision options for QLIP.

Figure S1. Bit allocation over different batch sizes.

Layer No. Operator Kernel
(Cin × Cout)

1 Linear / ReLU Cclip × Cclip

2 Linear / ReLU Cclip × 512
3 Linear / ReLU 512× 1
4 Sigmoid -

Table S5. The structure of the T2Q module.

quantization [3]. To test its applicability in diffusion mod-
els, we replaced the T2Q and Q2B modules with T2C and
C2B modules that utilize image complexity, measured as
average image gradient magnitude. However, this config-
uration resulted in worse performance (FAB 14.86, FID
31.09) compared to the original QLIP design (FAB 12.14,
FID 30.01), suggesting that image complexity alone is not
a reliable criterion for bit selection in diffusion models.

We also evaluated a prompt length-based bit allocation
strategy, where the number of tokens in the input prompt
was used to decide bit precision. This variant also underper-
formed (FAB 12.79, FID 31.49) relative to our original ap-
proach. Unlike prompt length, which only reflects the input
length, the T2Q module captures richer semantic represen-
tations from text, leading to more accurate bit assignment
and better image quality.

D. Ablation Studies on Bit-Options

The impact of different bit-options on FAB and FID is
presented in Table S4. The results demonstrate that while
the {6,8,16,32} configuration achieves the lowest FAB, it

Figure S2. Implementation details of ablation study variants for
the Q2B module. (a) Bit-Options correspond to the case with 2
bit candidates using pq . (b), (c), and (d) correspond to the case
with 3 bit candidates using pq + pt

h, pq + pt
m, and pq + pt

m +

pt
h, respectively. (e) Bit-Options correspond to the case with 4 bit

candidates.

also leads to an increase in FID. Conversely, the {8,16,32}
configuration results in the lowest FID while maintaining a
relatively low FAB, making it a better choice for minimizing
image degradation and effectively reducing computational
overhead. Based on these findings, we select {8,16,32} as
the default bit-option.

E. Batch Inference Scenario

Our practical implementation strategy for batch process-
ing is to assign the maximum required bit precision for each
layer across the batch. As shown in Fig. S1, the effective-
ness of QLIP decreases as the batch size increases, which
is a known limitation of input-adaptive quantization meth-
ods. However, text-to-image generation is typically per-
formed on individual prompts or small batches. For exam-



ple, the recent GPT Image 1 API [2] provided by OpenAI
officially supports small batch sizes per API call, and pro-
cessing many images requires issuing multiple parallel API
calls, rather than increasing the batch size within a single
request. Therefore, this limitation has less significant prac-
tical impact.

F. Memory Requirements
QLIP requires additional memory to store the model, in-

cluding 1.5MB for the T2Q module and 12.1KB for the
Q2B module, and additional 2.2KB for scale and zero-point
values. However, this additional memory overhead is negli-
gible compared to the total memory of BK-SDM-Tiny-2M
4bit (154.2MB). While our method does not reduce mem-
ory usage, it improves both energy efficiency and inference
time by reducing the computational cost.

G. Structure of the T2Q module
As shown in Table S5, the T2Q module consists of a sim-

ple 3-layer MLP with a ReLU activation function. The first
linear layer is the projection layer of the CLIP text encoder,
which is frozen during training. In the final layer, a sigmoid
function is used to limit the output range of the quality q.

H. Implementation Details on Ablation Studies
The implementation of the Q2B modules used in abla-

tion studies is shown in Figure S2. When only pq is used,
pt
med is not included, limiting the bit-options to two can-

didates. When pt
l (or pt

h) is not used, pt
low

(
or pt

high

)
is

determined using pq , adjusting the available three-bit can-
didates accordingly. Incorporating additional bit-options,
such as pt

mlow and pt
mhigh, can further increase the number

of bit candidates.

I. Analysis on Quantization Sensitivity
Figure S3 shows the proportion of bits used in each layer

of the quantized denoising model. Stable Diffusion utilizes
cross-attention blocks to incorporate text prompts into the
image latent space, in addition to basic residual blocks. No-
tably, our proposed QLIP aims to manage the overall bit us-
age, particularly by assigning low bits more frequently on
the layers in cross-attention blocks. Specifically, it is evi-
dent that bit reduction occurs mainly within three layers: (1)
“proj in” which leverages the denoised image latent passed
into the cross-attention block, (2) “at2.to v” which projects
text prompt to denoised image latent, (3) “proj out” which
passes out the result of cross-attention to the next denoising
blocks. These results are attributed to many cases with a
weak correlation between the generated image and the text
prompt, promoting the T2Q and Q2B modules to determine
low bits for efficient quantization.

J. Additional Qualitative Results
Figure S4 presents additional examples illustrating how

changes in FAB are influenced by the richness and speci-
ficity of the text descriptions, along with the generated im-
ages. As shown, QLIP assigned higher bits when the text
provides more specific and detailed descriptions, demon-
strating that it leverages textual information to adapt bit
precision, enabling effective synthesis of vivid details and
textures.

Figures S5 and S6 show additional examples of the bit
selection results and generated images using Q-diffusion or
PTQD as baseline quantization methods. Figure S7 pro-
vides examples of images generated by QLIP using Q-
diffusion or PTQD as baseline quantization methods, along
with the full-precision model. The text prompts for generat-
ing images were sourced from the captions of COCO2017
and Conceptual Captions datasets.
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Figure S3. The proportion of bits assigned in each layer of the Stable Diffusion model quantized by W4A{6,8,10} using Q-diffusion w/
QLIP while generating 10k images using the COCO2017 validation dataset. On the x-axis, cross-attention blocks and residual blocks are
indicated in red and black, respectively. (a) and (b) show the statistics of several layers in the input, middle and output blocks.



Figure S4. Examples of variations in FAB by QLIP for the texts with different levels of richness and detail, along with the generated
images.



Figure S5. Examples of the bit selection results and generated images using Q-diffusion or PTQD as baseline quantization methods. QLIP
is applied with the bit precisions of W4A{6,8,10}.



Figure S6. Examples of the bit selection results and generated images using Q-diffusion or PTQD as baseline quantization methods. QLIP
is applied with the bit precisions of W4A{8,16,32}.



Figure S7. Examples of generated images using QLIP with Q-diffusion or PTQD as baseline quantization method.
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