
Understanding Flatness in Generative Models: Its Role and Benefits

1. Mathematical claims and proofs
For the main claims, we follow L(x;θ, t, pt) := ||sθ(x, t) −∇x log pt(x)||22, while dropping the timestep t without loss of
generality. Our mathematical claims are valid for all timesteps.

Definition 1. (∆-flat minima) Let us consider a SGM with loss function L(x;θ, p). A minimum θ∗ is ∆-flat minima when
the following constraints are hold:

∀ δ ∈ Rd×m s.t. ∥δ∥2 ≤ ∆, L(x;θ∗ + δ, p) = l∗

∃ δ ∈ Rd×m s.t. ∥δ∥2 > ∆, L(x;θ∗ + δ, p) > l∗,

where l∗ := L(x;θ∗, p) and ∆ ∈ R+.1

Definition 2. (E-distribution gap robustness) A minimum θ∗ is E-distribution gap robust when the following constraints
are hold:

∀ p̂(x) s.t. D(p||p̂) ≤ E , L(x;θ∗, p̂) = l∗

∃ p̂(x) s.t. D(p||p̂) > E , L(x;θ∗, p̂) > l∗,

where D(·||·) is the divergence between two probability density functions, p̂ is the perturbed prior distribution of x, and E is
a positive real number.

Theorem 1. (A perturbed distribution) For a given prior distribution of p(x) and the δ-perturbed minimum, i.e., θ + δ,
the following p̂(x) satisfies the L(x;θ + δ, p) = L(x;θ, p̂):

p̂(x) = e−I(x,δ)p(x), (1)

where I(x, δ) := 1
2x

⊤(δW⊤)x+ x⊤δ(U⊤e) + C, and C ∈ R is set to satisfy
∫
Rd

e−I(x,δ)p(x)dx = 1.

Proof. By following [? ], we formulate the score model sθ(·, ·) as a random feature model:

sθ(x, t) :=
1

m
θσ(W⊤x+U⊤et) (2)

where x ∈ Rd×1, θ ∈ Rd×m, W ∈ Rd×m, U ∈ Rde×m, et ∈ Rde×1, and d, m, de are positive integers.
The score matching loss objective is defined as

L(x;θ, p) := ||sθ(x)−∇x log p(x)||22, (3)

For the perturbation δ ∈ Rd×m in the diffusion model parameters θ, the perturbed loss value becomes:

L(x;θ + δ, p) := ||sθ+δ(x)−∇x log p(x)||22. (4)

sθ+δ(x)−∇x log p(x) (5)

=
1

m
(θ + δ)σ(W⊤x+U⊤e)−∇x log p(x) (6)

=
1

m
θσ(W⊤x+U⊤e) +

1

m
δσ(W⊤x+U⊤e)−∇x log p(x) (7)

1∀ means ‘for all,’ ∃ means ‘there exists,’ and R+ indicates the set of positive real numbers
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Let us focus on the second and third terms with the assumptions of the positive outputs for the activation function:

1

m
δ(W⊤x+U⊤e)−∇x log p(x) (8)

Here, let us define I(x) as a function of x, whose derivative is the first term of the previous equation:

∂I(x)

∂x
=

1

m
δ(W⊤x+U⊤e) (9)

Based on it, I(x) ∈ R is

I(x) =
1

2
x⊤(δW⊤)x+ x⊤δ(U⊤e) + C, (10)

with the assumption δW⊤ is symmetric and where C is a constant real number.

1

m
δ(W⊤x+U⊤e)−∇x log p(x) (11)

= ∇xI(x)−∇x log p(x) (12)

= −∇ log
(
e−I(x)p(x)

)
(13)

When C is the real number that satisfies the following condition for the function I with C:∫
Rd

e−I(x)p(x) = 1, (14)

then we can define p̂(x) to be a perturbed PDF of inputs:

p̂(x) := e−I(x)p(x) (15)

= exp
{
− 1

2m
x⊤(δW⊤)x− 1

m
x⊤δ(U⊤e)− C)

}
p(x) (16)

Corollary 1. (Diffusion version of Theorem 1) For a given prior Gaussian distribution of noise ϵ ∼ N (0, I) and the
δ-perturbed minimum, i.e., θ + δ, the following ϵ̂ satisfies the L(x;θ + δ, p) = L(x;θ, p̂):

ϵ̂ = e−I(x,δ)ϵ = N (µδ,Σδ), (17)

where Σδ :=

(
I+

δw
m

)−1

, µδ :=
1

m
Σδδu.

Proof. We provide the theoretical link that the model satisfying the E-flat in Theorem 1 is also robust to distribution shift
caused by the exposure bias.

Before that, we introduce the notations:
• ϵ(x): the true Gaussian distribution that is known in the training process.
• ϵ̂(x): the perturbed distribution that caused by the δ model perturbation in Eq. (15).

When we train the diffusion model, we add the noise ϵ in the forward process and want the diffusion model to predict the
ϵ in the reverse process where ϵ follows the normal Gaussian distribution, i.e., ϵ ∼ N (0, I). Therefore, the distribution that



the model trains is the normal Gaussian, and we can define the perturbed Gaussian distribution as follows:

ϵ̂(x) := e−I(x,δ)ϵ (18)

= exp

(
− 1

2m
x⊤δwx− 1

m
x⊤δu − C

)
· 1√

(2π)d
exp

(
− 1

2
x⊤x

)
, (19)

where δw := δW⊤, δu := δU⊤e, and ϵ ∼ N (0, I)

=
1√
(2π)d

exp

(
− 1

2
x⊤(I+

1

m
δw)x− 1

m
x⊤δu − C

)
(20)

=
1√
(2π)d

exp

(
− 1

2
x⊤(I+

1

m
δw)x− 1

m
x⊤δu − 1

2m2
δ⊤u Σδδu − 1

2
log |Σδ|

)
, (21)

where C =
1

2m2
δuΣδδu +

1

2
log |Σδ| (22)

=
1√

(2π)d|Σδ|
exp

(
− 1

2
(x− µδ)

⊤Σδ
−1(x− µδ)

)
, where Σδ :=

(
I+

δw
m

)−1

, and µδ := − 1

m
Σδδu (23)

Because the ϵ̂(x) is also the Gaussian distribution, we present the KL Divergence between ϵ̂(x) = N (µδ,Σδ) and
ϵ(x) = N (0, I) as follows:

Definition 3. (A set of perturbed distribution) For a given distribution of p(x), a set of distributions P̂(x; p,∆) is defined
as the set of perturbed distributions p̂(x):

P̂(x; p,∆) := {e−I(x,δ)p(x) | ∥δ∥2 ≤ ∆}. (24)

Proposition 1. (A link from ∆-flatness to P̂) A ∆-flat minimum θ∗ achieves the flat loss values for all distributions
sampled from the set of perturbed distribution:

∀ p ∼ P̂(x; p,∆), L(x;θ∗, p) = l∗ (25)

∃ p ≁ P̂(x; p,∆), L(x;θ∗, p) > l∗. (26)

Theorem 2. (A link from ∆-flatness to E-gap robustness) A ∆-flat minimum achieves E-distribution gap robustness, such
that E is upper-bounded as follows:

E ≤ max
p̂∼P̂(x;p,∆)

D(p||p̂). (27)

Corollary 2. (Diffusion version of Theorem 2) For a diffusion model, a ∆-flat minimum achieves E-distribution gap
robustness, such that E is upper-bounded as follows:

E ≤ max
∥δ∥2≤∆

1

2

[
log |Σδ| − d+ tr(Σ−1

δ ) + µδ
⊤Σ−1

δ µδ

]
(28)

≤ 1

2

[
d∑
i

(σi − log σi)− d+
σd

m2
∥U⊤e∥22∆2

]
(29)

where σi is an eigenvalue of Σ−1
δ with the increasing order of σ1 ≤ σ2 ≤ . . . ≤ σd.

Proof. From the definition 2, a minimum θ∗ hold following:

∀ p̂(x) s.t. D(p||p̂) ≤ E , L(x;θ∗, p̂) = l∗.



Let σi is an eigenvalue of Σ−1
δ with the increasing order σ1 ≤ σ2 ≤ . . . ≤ σd. Then, the Diffusion version of Theorem 2

is represented as follows:

E ≤ max
∥δ∥2≤∆

DKL(ϵ∥ϵ̂) (30)

= max
∥δ∥2≤∆

1

2

[
log |Σδ| − d+ tr(Σ−1

δ ) + µδ
⊤Σδ

−1µδ

]
(31)

= max
∥δ∥2≤∆

1

2

[
d∑
i

log
1

σi
− d+

d∑
i

σi + µδ
⊤Σδ

−1µδ

]
(32)

≤ 1

2

[
d∑
i

(σi − log σi)− d+
σd

m2
∥U⊤e∥22∆2

]
, (33)

where inequality Eq. (33) holds when µδ is the eigenvector satisfying Σ−1
δ µδ = σdµδ .
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Figure 1. Additional results for CIFAR-10. We measure the L2 norm of predicted noise and loss plots under perturbation for all algorithms
including +IP+EMA, +IP+SWA, +SAM+EMA, +SAM+SWA.
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Figure 2. (Left)L2 norm of the predicted noise for LSUN Tower dataset, (Right) Loss plots under perturbation for LSUN Tower.

LPF ↓ w/o +EMA +SWA
ADM 0.091 0.090 0.092
+IP 0.089 0.092 0.097
+SAM 0.072 0.070 0.071

↓: a lower value is preferred.

Table 1. Flatness measure on LSUN Tower. We calculate the loss with the perturbed model with Gaussian noise. Lower values indicate a
flatter loss landscape.

2. Additional experimental results
2.1. Further results for mixture of baselines
In Fig. 1, we report additional results for +IP+EMA, +IP+SWA, +SAM+EMA, +SAM+SWA for CIFAR-10. We observe
that ADM already possesses a certain level of flatness supporting +SWA and +EMA fail to induce additional flatness. We
also report L2 norm of predicted noise loss plots under perturbation in Fig. 2 and LPF flatness in Table. 1 for LSUN Tower
dataset. It coincides with the result of CIFAR-10 that +SAM induces the lower exposure bias and flatter minima.

2.2. Sampling results using fixed random seed
We did not fix the random seed in Fig. 4 of the main paper. We report FID under varying quantization levels with a fixed
seed in Fig. 3. As shown, the results remain consistent with our main findings, and all randomly selected samples follow the
same trends discussed in the paper.
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Figure 3. FID under quantization with fixed random seed.

Dataset CIFAR-10 (32x32)
T ′ 20 steps 100 steps

ADM+pEMA 6.58 7.39
SAM+pEMA 6.50 5.46

Table 2. FID of post-hoc EMA (+pEMA) with ADM, +SAM.

2.3. Post-hoc EMA
EMA provides significant performance improvements with a simple approach, but it requires cumbersome accumulation of
checkpoints during training, and it is also hard to obtain a new combination of EMA after training is completed. Post-hoc
EMA (pEMA) defines averaged coefficients as a power function at time t:

θ̂γ(t) =
γ + 1

tγ+1

∫ t

0

τγθ(τ)dτ, (34)

where constant γ controls the sharpness of merged checkpoints and τγ determines the time weighting. θ̂γ(t) is updated as
follows:

θ̂γ(t) = βγ(t)θ̂γ(t− 1) + (1− βγ(t))θ(t), βγ(t) = (1− 1

t
)γ+1, (35)

which is quite similar to conventional EMA. Tab. 2 and Fig. 3 (c), (e) show that FID performance and sample visualization
of post-hoc EMA(pEMA). Compared with Table 2 in the main paper, pEMA achieves the highest FID improvements; it still
suffers from LPF value (0.103) even though it searches a wider range of combinations than EMA. Also, pEMA exhibits a
lack of robustness, evidenced by a sharp FID degradation of 6.58 → 170.09 under 4-bit quantization. Building upon the
analysis of EMA and SWA in the main paper, we argue that well-crafted weight averaging also suffers from poor flatness and
robustness.
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