Understanding Flatness in Generative Models: Its Role and Benefits

1. Mathematical claims and proofs

For the main claims, we follow £(x;0,t,p;) := ||sg(x,t) — Vx log p;(x)||3, while dropping the timestep ¢ without loss of
generality. Our mathematical claims are valid for all timesteps.

Definition 1. (A-flat minima) Let us consider a SGM with loss function L(x; 0, p). A minimum 0* is A-flat minima when
the following constraints are hold:

Vo eR>™ st |0l < A, L(x;0% +8,p) =1
36 e R ™ st ||8]la > A, L(x;0% +6,p) > 17,
where I* := L(x;0",p) and A € RT.!

Definition 2. (E-distribution gap robustness) A minimum 0* is E-distribution gap robust when the following constraints
are hold:

Vp(x)s.t. D(p||p) <&, L(x;0",p)=1*

Ip(x) s.t. D(p||p) > &, L(x;0%,p) > 1",
where D(-||-) is the divergence between two probability density functions, p is the perturbed prior distribution of X, and £ is
a positive real number.

Theorem 1. (A perturbed distribution) For a given prior distribution of p(x) and the §-perturbed minimum, i.e., 6 + 9,
the following p(x) satisfies the L(x;0 + §,p) = L(x;0,p):

p(x) = e "*Vp(x), 1)
where I(x,6) := 3xT (§W T)x +x"8(U"e) + C, and C € R is set to satisfy e 1 p(x)dx = 1.
]Rd
Proof. By following [? ], we formulate the score model sg (-, ) as a random feature model:

1
se(x,t) == EQO’(WTX +U'e) )

where x € R¥¥1, 9 € R>X™ W € R¥>*™ U € R%*™ e, € R%*1 and d, m, d. are positive integers.
The score matching loss objective is defined as

L(x;0,p) := ||se(x) — Vx logp(x)|[3, 3)
For the perturbation § € R4*™ in the diffusion model parameters 6, the perturbed loss value becomes:

L(x;0 +6,p) := ||se+5(x) — Vx log p(x)][3- @)
s6+5(x) — Vx log p(x) (5)

1
= E(6 +68)0(W'x+U'e) — Vylogp(x) (6)

1 1

= EBU(WTX—i-UTe) + E<sa(va><+UTe) — Vy log p(x) (7)

1Y means “for all,” 3 means ‘there exists,” and R indicates the set of positive real numbers



Let us focus on the second and third terms with the assumptions of the positive outputs for the activation function:
1
—3(WTx +U"e) — Vy logp(x) (8)
m

Here, let us define I(x) as a function of x, whose derivative is the first term of the previous equation:

) _ 1 swTx+UTe) )
ox m
Based oniit, I(x) € Ris
1
I(x) = EXT(awT)x +x'6(U"e)+C, (10)

with the assumption W ' is symmetric and where C'is a constant real number.

%5(WTX +U'e) — Vylog p(x) (11)
= VxI(x) — Vxlogp(x) (12)
= —Vlog (e_I(x)p(x)) (13)

When C' is the real number that satisfies the following condition for the function I with C:

/ e 100p(x) = 1, (14)
]Rd
then we can define p(x) to be a perturbed PDF of inputs:
p(x) := e p(x) (15)
_ 1y Tve L o TemTay
- exp{ S—x (BWT)x— —xT5(UTe) 0)}p(x) (16)
[

Corollary 1. (Diffusion version of Theorem 1) For a given prior Gaussian distribution of noise ¢ ~ N(0,1) and the
0-perturbed minimum, i.e., 0 + 9, the following ¢ satisfies the L(x;0 + 0,p) = L(x;0,D):

¢ = e 10 = (s, 55), (17)

6w\ 1
where X5 = [ I+ — , s = — 250y
m m

Proof. We provide the theoretical link that the model satisfying the £-flat in Theorem 1 is also robust to distribution shift
caused by the exposure bias.

Before that, we introduce the notations:
* €(x): the true Gaussian distribution that is known in the training process.
* é(x): the perturbed distribution that caused by the ¢ model perturbation in Eq. (15).

When we train the diffusion model, we add the noise € in the forward process and want the diffusion model to predict the
€ in the reverse process where e follows the normal Gaussian distribution, i.e., € ~ N(0,I). Therefore, the distribution that



the model trains is the normal Gaussian, and we can define the perturbed Gaussian distribution as follows:

é(x) = e 109 (18)
e L x 6% L x'0 C e 1XTX (19)
= €X . wX — — u : X . 5
P 2m m (Qﬁ)d P 2
where 6, := dW 5, := dU"e, and e ~ N(0,1)
1 1. 1 1 -
= —ox (I+ —0w)x——x 0, — 2
oL exp( 5% I+ m(s“ )x X ) C’) (20)
__ b e s tyts o L srys L
= o exp < 5% I+ méw)x —X Su 52 0y L50y, 5 log 25|>, (1)
1 1
where C' = — 6,556, + = log || (22)
2m?2 2
! e < L (x )Tes )) where ¥ <I + 6w)1 and ! 56 (23)
= 707X 5 - - ’ = - 9 = u
25| p 5 Hs 5 Hs 5 m Hs m

Because the é(x) is also the Gaussian distribution, we present the KL Divergence between é(x) = N (ps,Ys) and
e(x) = N(0,1) as follows: O

Definition 3. (A set of perturbed distribution) For a given distribution of p(X), a set of distributions ’p(x; p, A) is defined
as the set of perturbed distributions p(x):

P(x;p, A) = {e 1Cp(x) | [|6]]2 < A). (24

Proposition 1. (A link from A-flatness to 75) A A-flat minimum 6" achieves the flat loss values for all distributions
sampled from the set of perturbed distribution:

Vpe~ ﬁ(x;p, A), L(x;0%,p)=1" (25)
Jp 75(x;p7 A), L(x;0%,p)>1". (26)

Theorem 2. (A link from A-flatness to E-gap robustness) A A-flat minimum achieves E-distribution gap robustness, such
that £ is upper-bounded as follows:

£< max D(pllp)- 27)
P~P(x5p,A)

Corollary 2. (Diffusion version of Theorem 2) For a diffusion model, a A-flat minimum achieves E-distribution gap
robustness, such that £ is upper-bounded as follows:

: -1 Ty —1
€= |§P3§A2[10g|26| —d+1r(S51) + s 55 28)
1< ”
d
< Q[Z(JiIOgUi)d+TrL2|UTe||§A2 00
where o; is an eigenvalue of 26_1 with the increasing order of 01 < 09 < ... < 0y.

Proof. From the definition 2, a minimum 6* hold following:

Vp(x) s.t. D(pllp) < €, L(x;0%,p) =1".



Let o; is an eigenvalue of Zgl with the increasing order 07 < 09 < ... < 04. Then, the Diffusion version of Theorem 2
is represented as follows:

€ < max Dgr(ellé) 50
lI5llz<A
1
= max = |log|8s| —d+tr(Z7H) + p: 25t "
|6|2<A2l &[>l (B5) + s S5 1y 1)
1[E 1 d
= a 1 —_ —d i TE —1 32
|§P3§A2l§; *o +§;a s S H (32)
1< ”
4 17T el2 A2

where inequality Eq. (33) holds when g5 is the eigenvector satisfying Egl,u(; = 0oglhs. O
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Figure 1. Additional results for CIFAR-10. We measure the L2 norm of predicted noise and loss plots under perturbation for all algorithms
including +IP+EMA, +IP+SWA, +SAM+EMA, +SAM+SWA.
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Figure 2. (Left)L2 norm of the predicted noise for LSUN Tower dataset, (Right) Loss plots under perturbation for LSUN Tower.

LPF| | w/o +EMA +SWA
ADM | 0.091 0.090 0.092

+IP | 0.089 0.092 0.097
+saM | 0.072 0.070 0.071

J: alower value is preferred.

Table 1. Flatness measure on LSUN Tower. We calculate the loss with the perturbed model with Gaussian noise. Lower values indicate a
flatter loss landscape.

2. Additional experimental results

2.1. Further results for mixture of baselines

In Fig. 1, we report additional results for +IP+EMA, +IP+SWA, +SAM+EMA, +SAM+SWA for CIFAR-10. We observe
that ADM already possesses a certain level of flatness supporting +SWA and +EMA fail to induce additional flatness. We
also report L2 norm of predicted noise loss plots under perturbation in Fig. 2 and LPF flatness in Table. | for LSUN Tower
dataset. It coincides with the result of CIFAR-10 that +SAM induces the lower exposure bias and flatter minima.

2.2. Sampling results using fixed random seed

We did not fix the random seed in Fig. 4 of the main paper. We report FID under varying quantization levels with a fixed
seed in Fig. 3. As shown, the results remain consistent with our main findings, and all randomly selected samples follow the
same trends discussed in the paper.
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Figure 3. FID under quantization with fixed random seed.

Dataset CIFAR-10 (32x32)

T’ 20 steps 100 steps
ADM+pEMA  6.58 7.39
SAM+pEMA  6.50 5.46

Table 2. FID of post-hoc EMA (+pEMA) with ADM, +SAM.

2.3. Post-hoc EMA

EMA provides significant performance improvements with a simple approach, but it requires cumbersome accumulation of
checkpoints during training, and it is also hard to obtain a new combination of EMA after training is completed. Post-hoc
EMA (pEMA) defines averaged coefficients as a power function at time ¢:

. +1
,() = 1 / 770(7)dr, (34)
0

where constant y controls the sharpness of merged checkpoints and 77 determines the time weighting. éy(t) is updated as

follows:
1

01(8) = By()0(t = 1) + (1= B,(0)0(1),  B,(1) = (1= 3)7", (35)
which is quite similar to conventional EMA. Tab. 2 and Fig. 3 (c), (e) show that FID performance and sample visualization
of post-hoc EMA(pEMA). Compared with Table 2 in the main paper, pPEMA achieves the highest FID improvements; it still
suffers from LPF value (0.103) even though it searches a wider range of combinations than EMA. Also, pEMA exhibits a
lack of robustness, evidenced by a sharp FID degradation of 6.58 — 170.09 under 4-bit quantization. Building upon the
analysis of EMA and SWA in the main paper, we argue that well-crafted weight averaging also suffers from poor flatness and
robustness.
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