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A. Illustrative Comparison of Optimizations
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(b) Update pipeline of L-VSD
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(c) Update pipeline of L2-VSD

Figure 1. Overview of VSD, L-VSD and L2-VSD training.

We present an illustrative overview about the updating pipeline of VSD, L-VSD and L2-VSD respectively. As stated in
section 2.2 of main paper, we use θi and ϕi to represent the 3D and the LoRA models at ith iteration respectively. We use
arrows with different colors to represent state transition dependency. We argue that red dashed arrow pointing from ϕi to θi
is important for better results’ quality.

More illustrative 2D gaussian examples. To gain a more complete view about the convergence of VSD, we conduct
two additional gaussian experiments as shown in Fig. 2 and Fig. 3. In the example of Fig.2 of main paper, we only sample
one point to keep as the same in ProlificDreamer, in which only one view of 3D object is rendered. In Fig. 2, we increase
the number to 4, finding that the error introduced by optimization order could be mitigated to some extent. This evidence
enlightens us that VSD with multi-view estimation may perform better, part of which has been proved in MVDream [19].
Besides, we also show the bad convergence if we overfit LoRA model on current sampled views in Fig. 3. It’s worth noting
that the distribution tends to lie between the intersection of two gaussian modals, making the views more saturated, which is
coherent to the finding in section 3.3 of main paper. We provide the reproducible example code in Appendix. F.

B. Experiment Implementation

B.1. Main Experiments Details
Qualitative Results. In this section, we provide more details on the implementation of L2-VSD and the compared base-
line methods. All of them are implemented under the threestudio framework directly in the first stage coarse generation,
without geometry refinement and texture refinement, following [29]. For the coarse generation stage, we adopt foreground-
background disentangled hash-encoded NeRF [11] as the underlying 3D representation. All scenes are trained for 15k steps
for the coarse stage, in case of geometry or texture collapse. At each interation, we randomly render one view. Different from
classic settings, we adjust the rendering resolution directly as 64 × 64 in the low resolution experiments. And increase to
256 × 256 resolution in the high resolution experiments. All of our experiments are conducted on a single NVIDIA GeForce
RTX 3090.

Quantitative Results. To compute FID [2], we sample N images using pretrained latent diffusion model given text
prompts as the ground truth image dataset, and render N views uniformly distributed over a unit sphere from the optimized
3D scene as the generated image dataset. Then standard FID is computed between these two sets of images. To compute
CLIP similarity, we render 120 views from the generated 3D representations, and for each view, we obtain an embedding
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Figure 2. Comparison of VSD and L-VSD with more render samples. In this example, we sample 4 points in each iteration.
,
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Figure 3. Exploring the impact of r(x) overfitting on rendered samples. In this example, r(x) is delta distribution as we overfit it on x
in each iteration.
vector and text embedding vector through the image and text encoder of a CLIP model. We use the CLIP ViT-B/16 model
[13].

B.2. High Order ∆ϵhighomputation Details

As mentioned above in section 4.1 of main paper, we can comppute ∆ϵhigh as ϵϕi+1
(xt, t, c, y)− ϵϕi

(xt, t, c, y)−∆ϵfirst.
In practice, we implement this computation during the training process of L-VSD. We copy an additional LoRA model to
restore the LoRA parameters before being updated. Then in each optimization iteration for θi, the LoRA model performs
forward passes for three times to calculate the ϵϕi , ϵϕi+1 and ∆ϵfirst respectively.

B.3. Computation Costs

While our method can take 0.3s per iteration than baseline, our method can converge much faster as demonstrated by Fig.2
of main paper. Usually our method can produce satifying results in 10k steps, while VSD needs 15k steps or more. As a
result, our method performs slightly more efficient than VSD, with higher quality. Even more, with last-layer approximation,
we can achieve a trade-off between efficiency and performance.

Time cost (s/iteration) Converge Steps Total time(hrs)

VSD ∼ 0.7 ∼15k ∼ 3
L2-VSD ∼ 1.0 ∼10k ∼ 2.7

L2-VSD (last-layer) ∼ 0.8 ∼11k ∼ 2.5

Table 1. Computation efficiency. We present the time cost in each iteration. We measure the average time on the threestudio framework.



Figure 4. Qualitative comparison with low resolution of 64. L2-VSD can generate highly detailed 3D assets even with low resolution,
while the other baselines (except for HiFA), suffering from geometry-texture co-training, tend to be blurry and have floaters.

C. More Experiment Results

C.1. Failure Cases Produced by L-VSD

Figure 5. Visualization of Failure Process. The upper row result is generated with original learning rate while the lower one is generated
with scaling the learning rate by 0.1. Each row corresponds to a continue optimization process. Our prompt is ”an astronaut riding a horse”.

We show an example of failure case produced by L-VSD in Fig. 5. We can observe that the upper one becomes over-
saturated faster than the below one. Though the below one collapses much slower, it can’t converge to a realistic case. Also,
we provide all the L-VSD results in Fig. 6, which reflects the unstable generation quality by naive L-VSD.

C.2. Generalization on other representations
We provide the results generated in the second ”geometry refinement” and third ”texture refinement” stage in Fig. 7 and
Fig. 8. In Fig. 7, the 3D objects are initialized with the results in the first stage. While in Fig. 8, we control the geometry
initialization to be the same for our method and VSD, thus directly comparing the texture generation quality. In Fig. 8, VSD



Figure 6. Results of L-VSD. These results are generated with the same prompts in Fig.1 and Fig.6 of main paper. As we can observe,
naive L-VSD usually fails in generating realistic objects, which is supported by our Gaussian example in Fig.2 of main paper.

generates destroyed car with random red color, connecting destroyed car with a fire but our method generates more purely.
And the texture of hand and the bowl in the bottom is also more realistic. As these two stages represent in mesh, we believe
this comparison reflects the generalization of our method on other representations.

Figure 7. Comparison at second and third stages. We initial the objects with first-stage’s results and compare the geometry and texture
refinement. As shown in the figure, the geometry generated by our method is more complete and texture generated by our method is much
more realistic.

C.3. Loss curve comparison at initial stages
To have a better understanding of the optimization behavior in section 3.1 of main paper, we show the loss curve at initial
stage in Fig. 9a. As shown by the curve, the loss is in similar level at the start of distillation, which is probably because the



Figure 8. Comparison on texture representation. We use VSD and our method to generate texture conditioned on the same geometry
initialization. Prompts: (Upper)”a completely destroyed car” ;(Bottom)”a zoomed out DSLR photo of a pair of floating chopsticks picking
up noodles out of a bowl of ramen”.
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(a) VSD multi-LoRA initial loss: At the start of distillation, the loss with
different LoRA steps is in the similar level.
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(b) Multi samples averaged loss curve. We average the LoRA loss on 3
samples, finding the general pattern of loss variation.

Figure 9. More Loss Curve.
,

objects don’t form into clear shape yet. So the predicted noises are all likely to be gaussian.

Also, to verify the generality of this phenomenon, we test on multiple samples and measure the average LoRA loss to
provide more convincing results, which is shown in Fig. 9b. The conclusion holds as the same as in the section 3.1 of main
paper. Also, we provide one sample ”crown” other than ”hamburger” to augment the proof.

C.4. Ablation of Generation with high-order term

We provide the results of one important ablation experiment in Fig. 11. We compare the results produced by VSD, L2-VSD
and HL-VSD(high-order lookahead VSD). In HL-VSD, we use the high-order term instead of the linear term to correct the
score. As shown in the figure, the results all collapse and become irrecognizable, which proves the effectiveness and necessity
of linearied lookahead.



Figure 10. VSD LoRA Comparison.

Figure 11. Results comparison with using high-order term. Prompts: (upper)”A rotary telephone carved out of wood” ;(Bottom)”a
DSLR photo of an exercise bike in a well lit room”

D. Other Related works

D.1. Text-to-Image Diffusion Models

Text-to-image diffusion models [14, 15] are essential for text-to-3D generation. These models incorporate text embeddings
during the iterative denoising process. Leveraging large-scale image-text paired datasets, they address text-to-image genera-
tion tasks. Latent diffusion models [16], which diffuse in low-resolution latent spaces, have gained popularity due to reduced
computation costs. Additionally, text-to-image diffusion models find applications in various computer vision tasks, including
text-to-3D [15, 22], image-to-3D [30], text-to-svg [5], and text-to-video [6, 21].

D.2. Text-to-3D Generation without 2D-Supervision

Text-to-3D generation techniques have evolved beyond relying solely on 2D supervision. Researchers explore diverse ap-
proaches to directly create 3D shapes from textual descriptions. Volumetric representations, such as 3D-GAN [26] and
Occupancy Networks [10], use voxel grids [8, 25]. Point cloud generation methods, like PointFlow [32] and AtlasNet [28],
work with sets of 3D points. Implicit surface representations, exemplified by DeepVoxels [23] and SIREN [24], learn implicit
functions for shape surfaces. Additionally, graph-based approaches (GraphVAE [20], GraphRNN [33]) capture relationships
between parts using graph neural networks.



D.3. Advancements in 3D Score Distillation Techniques
Various techniques enhance score distillation effectiveness. Magic3D [7] and Fantasia3D [1] disentangle geometry and
texture optimization using mesh and DMTet [18]. TextMesh [27] and 3DFuse [17] employ depth-conditioned text-to-image
diffusion priors for geometry-aware texturing. Score debiasing [3] and Perp-Neg [34] refine text prompts for better 3D
generation. Researchers also explore timestep scheduling (DreamTime [4], RED-Diff [9]) and auxiliary losses (CLIP loss
[31], adversarial loss [12]) to improve score distillation.

E. Discussion
Score Identity Distillation (SiD) [35] Apart from direct comparison with the text-to-3D score distillation method, our
method can draw some similarities with some 2D diffusion distillation methods. SiD reformulates forward diffusion as semi-
implicit distributions and leverages three score-related identities to create an innovative loss mechanism. The weighted loss
is expressed as:

L̃SiD(θi) = −α
w(t)

σ4
t

||ϵpretrain(xt, t)− ϵϕ(xt, t)||22

+
w(t)

σ4
t

(ϵpretrain(xt, t)− ϵϕ(xt, t))
T (ϵϕ(xt, t)− ϵ)

(1)

where xt = g(θi).Compared with the original VSD loss, the additional term in SiD has an important factor (ϵϕ − ϵ), which
corrects the original loss in a projected direction. This factor also exists in our term, so we assume that our first-order term
shares some similarity with this correction term.

F. Gaussian Example Code

1 import os
2 import math
3 import random
4 import numpy as np
5 from tqdm import tqdm, trange
6 import matplotlib.pyplot as plt
7

8 import torch
9 import torch.nn as nn

10 import torch.nn.functional as F
11 from torch.optim.lr_scheduler import LambdaLR
12

13 def get_cosine_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps,
min_lr=0., num_cycles: float = 0.5):

14

15 def lr_lambda(current_step):
16 if current_step < num_warmup_steps:
17 return float(current_step) / float(max(1, num_warmup_steps))
18 progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps -

num_warmup_steps))
19 return max(min_lr, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 *

progress)))
20

21 return LambdaLR(optimizer, lr_lambda, -1)
22

23 def seed_everything(seed):
24 random.seed(seed)
25 os.environ[’PYTHONHASHSEED’] = str(seed)
26 np.random.seed(seed)
27 torch.manual_seed(seed)
28 torch.cuda.manual_seed(seed)
29



30 def sample_gassian(mu, sigma, N_samples=None, seed=None):
31 assert N_samples is not None or seed is not None
32 if seed is None:
33 seed = torch.randn((N_samples, d), device=mu.device)
34 samples = mu + torch.matmul(seed, sigma.t())
35 return samples
36

37 # Core function: compute score function of perturbed Gaussian distribution
38 # \nabla \log p_t(x_t) = -(Simgaˆ{-1} + sigma_tˆ2 I) (x_t - \alpha_t * \mu)
39 def calc_perturbed_gaussian_score(x, mu, sigma, alpha_noise, sigma_noise):
40 if mu.ndim == 1:
41 mu = mu[None, ...] # [d] -> [1, d]
42 if sigma.ndim == 2:
43 sigma = sigma[None, ...] # [d, d] -> [1, d, d]
44

45 mu = mu * alpha_noise[..., None] # [B, d]
46 sigma = torch.matmul(sigma, sigma.permute(0, 2, 1)) # [1, d, d]
47 sigma = (alpha_noise**2)[..., None, None] * sigma # [B, d, d]
48 sigma = sigma + (sigma_noise**2)[..., None, None] * torch.eye(sigma.shape[1],

device=sigma.device)[None, ...] # [B, d, d]
49 inv_sigma = torch.inverse(sigma) # [B, d, d]
50 return torch.matmul(inv_sigma, (mu - x)[..., None]).squeeze(-1) # [B, d, d] @ [B, d, 1]

-> [B, d, 1] -> [B, d]
51

52 # data dimension
53 N = 256
54 d = 2
55 ndim = d
56 lora_steps = 10
57 # set the hyperparameters
58 seed = 0
59 dist_0 = 10
60 lr = 1e-2
61 min_lr = 0
62 weight_decay = 0
63 warmup_steps = 100
64 total_steps = 2000
65 scheduler_type = ’cosine’
66 lambda_coeff = 1.0
67 method = ’l-vsd’ # or ’real-vsd’, ’vsd’
68 output_dir = ’’
69 logging_steps = 10
70

71 device = torch.device(’cuda:0’)
72 seed_everything(seed)
73

74 # groundtruth distribution
75 p_mu = torch.rand(d, device=device) # uniform random in [0, 1] x [0, 1]
76 p_sigma = torch.rand((d, d), device=device) + torch.eye(d, device=device) # positive

semi-definite
77

78 # diffusion coefficients
79 beta_start = 0.0001
80 beta_end = 0.02
81

82 # parametric distribution to optimize
83 q_mu = nn.Parameter(torch.rand(d, device=device) * dist_0 + p_mu)
84 q_sigma = nn.Parameter(torch.rand(d, d, device=device))



85

86 r_mu = nn.Parameter(torch.zeros(d, device=device)).to(device)
87 r_sigma = nn.Parameter(torch.zeros(d, d, device=device)).to(device)
88

89 optimizer = torch.optim.AdamW([q_mu, q_sigma], lr=lr, weight_decay=weight_decay)
90 scheduler = get_cosine_schedule_with_warmup(optimizer, warmup_steps, int(total_steps*1.5),

min_lr) if scheduler_type == ’cosine’ else None
91

92 # set the optimizer and scheduler of LoRA model
93 r_optimizer = torch.optim.AdamW([r_mu, r_sigma], lr=5*lr, weight_decay=weight_decay)
94

95 # saving checkpoints
96 state_dict = []
97 N_render = 4
98 # store per-step samples. fixed seed for visualization
99 vis_seed = torch.randn((1, N, d), device=device)

100 vis_seed_true = torch.randn((1, N, d), device=device)
101 vis_seed2 = torch.randn((1, N, d), device=device)
102 vis_samples = [] # [steps, p+q, N_samples, N_dim]
103 # x_previous = 0
104

105 for i in trange(total_steps + 1):
106 optimizer.zero_grad()
107

108 # sample time steps and compute noise coefficients
109 betas_noise = torch.rand(N_render, device=device) * (beta_end - beta_start) + beta_start
110 alphas_noise = torch.cumprod(1.0 - betas_noise, dim=0)
111 sigmas_noise = ((1 - alphas_noise) / alphas_noise) ** 0.5
112

113 # sample from g(x) = q_mu + q_sigma @ c, c ˜ N(0, I)
114 x = sample_gassian(q_mu, q_sigma, N_samples=N_render)
115 # sample gaussian noise
116 eps = torch.randn((N_render, d), device=device)
117 # diffuse and perturb samples
118 x_t = x * alphas_noise[..., None] + eps * sigmas_noise[..., None]
119

120 # w(t) coefficients
121 w = ((1 - alphas_noise) * sigmas_noise)[..., None]
122

123 # compute score distillation update
124 if method == ’l-vsd’:
125 xp = x.detach()
126 for j in range(lora_steps):
127 r_optimizer.zero_grad()
128 q_muo = q_mu.detach()
129 q_sigmao = q_sigma.detach()
130 loss_r = F.mse_loss(q_muo, r_mu, reduction="sum") + F.mse_loss(q_sigmao, r_sigma,

reduction="sum")
131

132 loss_r.backward()
133 r_optimizer.step()
134

135 with torch.no_grad():
136 # \nabla \log p_t(x_t)
137 score_p = calc_perturbed_gaussian_score(x_t, p_mu, p_sigma, alphas_noise,

sigmas_noise)
138

139 if method == ’sds’:



140 # -[\nabla \log p_t(x_t) - eps]
141 grad = -w * (score_p - eps)
142 elif method == ’vsd’:
143 # \nabla \log q_t(x_t | c) - centering trick
144 cond_mu = x.detach()
145 cond_sigma = torch.zeros_like(q_sigma)
146 score_q = calc_perturbed_gaussian_score(x_t, cond_mu, cond_sigma, alphas_noise,

sigmas_noise)
147

148 # -[\nabla \log p_t(x_t) - \nabla \log q_t(x_t | c)]
149 grad = -w * (score_p - score_q)
150 elif method == ’real-vsd’ or method == ’l-vsd’:
151 cond_mu = r_mu.detach()
152 cond_sigma = r_sigma.detach()
153 score_q_appx = calc_perturbed_gaussian_score(x_t, cond_mu, cond_sigma,

alphas_noise, sigmas_noise)
154

155 grad = -w * (score_p - score_q_appx)
156

157 # reparameterization trick for backpropagation
158 # d(loss)/d(latents) = latents - target = latents - (latents - grad) = grad
159 grad = torch.nan_to_num(grad)
160 target = (x_t - grad).detach()
161 loss = 0.5 * F.mse_loss(x_t, target, reduction="sum") / N_render
162

163 loss.backward()
164 optimizer.step()
165 if scheduler is not None:
166 scheduler.step()
167

168

169 if method == ’real-vsd’:
170 r_mu_previous = r_mu.detach()
171 r_sigma_previous = r_sigma.detach()
172 xp = x.detach()
173 for j in range(lora_steps):
174 r_optimizer.zero_grad()
175 q_muo = q_mu.detach()
176 q_sigmao = q_sigma.detach()
177 loss_r = F.mse_loss(q_muo, r_mu, reduction="sum") + F.mse_loss(q_sigmao, r_sigma,

reduction="sum")
178

179 loss_r.backward()
180 r_optimizer.step()
181

182 # logging
183 if i % logging_steps == 0:
184 state_dict.append({
185 ’step’: i,
186 ’q_mu’: q_mu.detach().cpu().numpy(),
187 ’q_sigma’: q_sigma.detach().cpu().numpy(),
188 })
189

190 # save sample positions
191 with torch.no_grad():
192 p_samples = sample_gassian(p_mu, p_sigma, seed=vis_seed_true[0])
193 p_samples = p_samples.detach().cpu().numpy()
194



195 q_samples = sample_gassian(q_mu, q_sigma, seed=vis_seed[0])
196 q_samples = q_samples.detach().cpu().numpy()
197

198 if method == ’real-vsd’:
199 r_samples = sample_gassian(r_mu_previous, r_sigma_previous, seed=vis_seed2[0])
200 r_samples = r_samples.detach().cpu().numpy()
201 else:
202 r_samples = sample_gassian(r_mu, r_sigma, seed=vis_seed2[0])
203 r_samples = r_samples.detach().cpu().numpy()
204

205 vis_samples.append(np.stack([p_samples, q_samples, r_samples], 0))
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