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1. Vision Branch
The detailed vision branch is illustrated in Fig. 1. We first
leverage a pre-trained DETR [2] model for object detection,
identifying all detected humans and objects hi, oj , where
i ∈ {1, 2, · · · , nh}, j ∈ {1, 2, · · · , no}. Here, nh and no

represent the total number of detected humans and objects,
respectively. For each detection, we extract human and ob-
ject features from the DETR decoder, denoted as fhi

and
foj . We then generate all possible human-object feature
pairs, represented as (fhi , foj ). The human-object tokens
are computed as :

Thoij =
fhi

+ foj
2

+ f spatial
hoij

, (1)

where f spatial
hoij

is derived from human-object bounding
boxes, incorporating the center coordinates, width, height
of each box, pairwise intersection-over-union (IoU), and
relative area, which are then processed through an MLP to-
gether to obtain f spatial

hoij
. Thus, Thoij integrates both appear-

ance and spatial cues to enhance interaction representation
for each human-object feature pair (fhi

, foj ). The com-
plete set of human-object tokens is denoted as Tho, where
Tho = {Thoij | 1 ≤ i ≤ nh, 1 ≤ j ≤ no}.

To further incorporate interaction prior knowledge, we
leverage an LLM to generate descriptions of human body
configurations, object attributes, and their spatial relation-
ships with humans. These descriptions are then encoded by
the VLM text encoder to obtain prior knowledge features
fpr
ho. An example of the generated descriptions used to cap-

ture human-object interaction prior knowledge is provided
at the end of this section.

To integrate prior-knowledge features fpr
ho with human-

object tokens, we design a cross-attention module: First,
down and up projection layers are used to reduce com-
putational cost. Next, human-object tokens serve as the
query, while prior-knowledge features fpr

ho act as the key
and value in the cross-attention mechanism. Finally, a resid-

ual connection adds the input human-object tokens back to
the cross-attention output, refining interaction representa-
tion while preserving the original information.

The output human-object tokens are concatenated with
input image patches and fed into the VLM visual encoder,
guiding it to focus on human-object interactions and im-
proving action distinction. To enhance adaptability, we in-
sert the adapter [9] between each layer of the visual encoder.
The output includes adapted human-object tokens T̂ho and
an image feature map fglb

img ∈ RH×W×d. The final HOI
image feature, denoted as fimg ∈ Rd×1 and used by the
weight adaptation, is defined as follows:

fimg =
1

H ∗W

H∑
i=1

W∑
j=1

fglb
img(i, j, :). (2)

We denote the detected bounding boxes for the human,
object, and their union regions as bh, bo, and bu, respec-
tively. To extract features focused on specific human-
object interaction regions within the image, we first apply
RoI pooling to obtain region-specific features of dimen-
sion p × p × d, where p is set to 7. We then apply spa-
tial average pooling to each region-specific feature to obtain
fh
img, f

o
img, f

u
img.

The image fusion module is designed to combine the hu-
man and object features fh

img and fo
img, respectively. The

image fusion process takes the concat(fh
img, f

o
img) as input

and outputs fho
img. Here, concat denotes concatenation of

two features along the first dimension. To reduce computa-
tional cost, the image fusion module incorporates down and
up projection layers. The concatenated input features then
pass through a self-attention module, integrating action and
object visual features. Finally, a residual connection adds
the input back to the output, refining the fusion while pre-
serving input information.

According to Eq.(8) of the main paper, we compute the
action prediction sa. For convenience, we reproduce the
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Figure 1. Overview of our vision branch.

equation below:

sa = γ1 ∗ (sim(fu
img, F̂) + sim(T̂ho, F̂)) ∗ lRu+

γ2 ∗ sim(fho
img, F̂

ao
) ∗ lRao.

(3)

Here is an example prompt used with an LLM to gener-
ate prior knowledge for the human-object pair ⟨ human, car
⟩.

Provide a detailed description of the physical relation-
ship between a given human-object pair, focusing on vari-
ous possible configurations and spatial relationships with-
out assuming or naming specific interactions. For the pair
(human, car), describing the following perspectives:

1. **Human Body Description:** - Describe the posi-
tioning and orientation of key body parts (e.g., hands, feet,
arms, legs, torso, head) in relation to the object. - High-
light the possible roles of specific body parts (e.g., hands
gripping, feet pressing, or knees bending) without specify-
ing actions.

2. **Object Description:** - Provide a clear and con-
cise description of the object, focusing on its relative size,
shape, and structure compared to the human in the image.
- Include details about key components (e.g., wheels, deck
from skateboard) and their spatial relationship to the hu-
man body in various scenarios. - Highlight how the object
might be positioned (e.g., sliced, tilted, vertical) and how
its components could interact with specific body parts of
the human.

The goal is to provide a comprehensive pool of de-
scriptive information for the human, object, and their pos-
sible configurations in various scenarios. Avoid limiting
the scope by naming specific interactions or actions. Fo-
cus instead on a rich and versatile set of physical relation-
ships. Focus on critical details, avoiding redundant or non-
essential information to ensure clarity and precision.

The following is the prior knowledge generated by the
LLM for the human–car pair:

1. Human Body Description: (a) Positioning and Orien-
tation: - Head : The human’s head can be oriented in vari-
ous directions relative to the car, such as facing towards the
car, away from it, or to the sides. The head’s angle might
vary, possibly tilted up or down, depending on the human’s
position relative to the car’s height, such as looking over

the roof or under the chassis. - Torso : The torso may be
upright, leaning forward, or angled sideways. Its position
could vary significantly depending on proximity to the car,
such as standing next to it, bending over the hood, or lean-
ing against the side. - Arms and Hands : The arms might
be extended towards the car or resting at the sides. Hands
can be positioned near various parts of the car, such as the
door handles, mirrors, or hood, suggesting a potential for
contact or proximity. - Legs and Feet : Legs could be po-
sitioned straight, bent, or spread apart, depending on the
stance relative to the car. Feet might be placed firmly on
the ground, perhaps transitioning from one side of the car
to the other, or positioned close to the wheels or undercar-
riage. (b) Roles of Specific Body Parts: - Hands : The hands
might appear poised to make contact with the car’s surface,
potentially hovering over or near tactile features like han-
dles or mirrors. - Feet : The feet might be aligned parallel
to the car or angled towards it, suggesting readiness for
movement or balance. - Knees : Knees might be straight or
slightly bent, indicating a stance that accommodates reach-
ing or observing different parts of the car.

2. Object Description: (a) Size, Shape, and Structure: -
General Structure : The car is a relatively large object com-
pared to a human, with a defined structure typically includ-
ing a body, wheels, and windows. It is generally elongated
with a front (hood), middle (cabin), and rear (trunk). - Key
Components : - Wheels : Typically four, located at the cor-
ners of the car, often near the ground and could be aligned
with the human’s feet or legs. - Body Panels : Includ-
ing doors, hood, trunk, and roof, which vary in height and
shape, potentially aligning with the human’s torso or head.
- Windows and Mirrors : Positioned at varying heights,
likely matching the human’s eye level or above, affecting
the head’s orientation.

2. Language Branch
We leverage the LLM to generate descriptions for both HOI
and action classes in the language branch.

HOI Description Generation The descriptions for all
given HOI classes are utilized to obtain the VLM text fea-
tures F through the VLM text encoder, as discussed in Sec-
tion 3.1 of the main paper. For a detailed illustration, con-



sider the HOI class “hosing a car” as an example. The de-
scription generated for this HOI class is as follows:

“Hosing a car” description: The photo shows a person
using a hose to clean or wash a car. Common elements in-
clude water, soap, cleaning tools, and the person’s attention
to various parts of the car’s exterior.
Action Description Generation Additionally, we intro-
duce action descriptions for all given action classes to ob-
tain action regularization, as discussed in Section 3.2 of the
main paper.

Here is an example prompt provided to the LLM to gen-
erate a description for the action “hose”.

Please describe the visual features for action: hose.
The objects can be “car, dog, potted plant, elephant”.
Please summarize the common visual features for the ac-
tion, shared by the objects. Use LESS than 250 characters
for description. ”

The following is the action description generated by the
LLM for “hose”:

The visual features for the action “a person is hosing the
object” include: 1. Person holding a hose or water spray
nozzle. 2. Object being hosed (e.g. car, dog, potted plant,
elephant) in close proximity to the person. 3. Water spray
or stream visible, potentially creating a mist or splash. 4.
Person’s arm or hand in motion, indicating the action of
spraying water. 5. Background context suggesting an out-
door or yard setting.

3. Experiment Results

3.1. Implementation Details
In weight adaptation, image and text fusion and human-
object tokens design, all down projection layers reduce fea-
ture dimension from 512 to 64, while all up projection lay-
ers expands it back from 64 to 512. The head number of
self attention and cross attention modules is 2. The temper-
ature of KL divergence used in our method is 0.1. We use
AdamW [16] as the optimizer and the initial learning rate
is 1e-3. For all experiments, our batch size is set as 64 on
4 A5000 GPUs. Training takes 7 hours on 4 A5000 GPUs
(22.5 GB VRAM each) with only 4.0M trainable parame-
ters. Inference time is 82 ms per image.

We use three types of descriptions generated by founda-
tion models: (1) HOI class descriptions from EZ-HOI [8],
generated using LLaVA [15]. These descriptions are en-
coded by a VLM text encoder to produce F, as described
in Section 3.1 (VLM Feature Decomposition and Adapta-
tion) of the main paper. An example is also included in
the HOI Description Generation subsection of the language
branch (Sec. 2); (2) action descriptions for LLM-derived
action regularization, generated using the LLaMA-3-8B
model [4], and used in the language branch (Sec. 2); and (3)
Prior knowledge descriptions for human-object pairs, also

Method
HICO-DET

Full Rare Nonrare
One-stage Methods
GEN-VLKT (CVPR’22) [13] 33.75 29.25 35.10
EoID (AAAI’23) [19] 31.11 26.49 32.49
HOICLIP (CVPR’23) [18] 34.69 31.12 35.74
LogicHOI (NeurIPS’23) [12] 35.47 32.03 36.22
UniHOI (NeurIPS’23) [1] 35.92 34.39 36.26
Two-stage Methods
FCL (CVPR’21) [7] 29.12 23.67 30.75
ATL (CVPR’21) [6] 23.81 17.43 25.72
ADA-CM [9] (ICCV’23) 33.80 31.72 34.42
CLIP4HOI (NeurIPS’23) [17] 35.33 33.95 35.75
CMMP (ECCV’24) [11] 33.24 32.26 33.53
Ours (HOLa) 35.41 34.35 35.73
ADA-CMl (ICCV’23) 38.40 37.52 38.66
CMMPl (ECCV’24) 38.14 37.75 38.25
EZ-HOIl (NeurIPS’24) 38.61 37.70 38.89
Oursl (HOLa) 39.05 38.66 39.17

Table 1. Quantitative comparison of HOI detection with state-
of-the-art methods in the fully-supervised setting on HICO-DET.
Oursl denotes our scaled-up version utilizing the ViT-L/14 back-
bone.

generated by LLaMA-3-8B, and used in the vision branch
(Sec. 1).
Datasets We evaluate our method on the HICO-DET
dataset [3], a widely-used benchmark in human-object in-
teraction detection. HICO-DET contains 47,776 images in
total, consisting of 38,118 training images and 9,658 test
images. The dataset includes 600 HOI classes combined
from 117 action categories and 80 object categories. We
also provided the evaluation on the V-COCO [14], a sub-
set of COCO, comprises 10,396 images, with 5,400 train-
val images and 4,946 test images, and includes 24 action
classes and 80 object classes. Note that V-COCO only con-
tains evaluation under fully-supervised setting, but our fo-
cus is on the zero-shot HOI detection.

3.2. Quantitative Results
Fully Supervised Setting on HICO-DET We evaluate our
method against HOI approaches with zero-shot HOI de-
tection ability in the fully supervised settings , excluding
methods that do not support unseen-action HOI detection.
Table 1 demonstrates that our method sets a new state-of-
the-art performance on the HICO-DET dataset in the fully
supervised setting. Using the ViT-B backbone, the same
as those used in existing methods [1, 6, 7, 11–13, 17–19],
our method achieves a 35.41 mAP, surpassing all state-of-
the-art two-stage HOI detection methods. Switching to
a ViT-L backbone further enhances performance, reach-



reconstruction
score

rank
mAP

Unseen Seen Full
0.80 17 26.32 32.69 31.80
0.90 42 25.71 33.01 31.98
0.95 71 25.47 33.59 32.46
0.98 119 25.17 32.82 31.75

Table 2. Ablation study for the rank of basis features B and
weights W in the unseen-verb zero-shot setting.

ing 39.05 mAP. Although primarily designed to focus on
zero-shot HOI detection and improve generalization to un-
seen classes, our method also shows competitive results in
the fully supervised setting, underscoring its effectiveness
across diverse evaluation scenarios.
Fully Supervised Setting on V-COCO Our method also
demonstrates competitive performance on the V-COCO
dataset, achieving a 66.0 APS2

role, achieving an improve-
ment of 2.0 mAP over the current state-of-the-art method,
CMMP [11]. Our APS1

role = 60.3.

3.3. Ablation Study
Rank Selection for B and W We conduct an ablation
study on the rank m of the basis features and weights, as
shown in Table 2. This study specifically explores the im-
pact of the selected rank m on the performance, focusing
solely on the feature decomposition module. Consequently,
other components, such as the action prior and the action-
object branch, were excluded from this analysis.

We initialize the weights and basis features using Prin-
cipal Component Analysis (PCA). Specifically, we achieve
reconstruction percentages of 0.80, 0.90, 0.95, and 0.98 for
the original VLM text features, F. These percentages cor-
respond to ranks of 17, 42, 71, and 119, respectively, in the
obtained weights and basis features.

The evaluation results show that a rank 17 yields the
highest unseen mAP (26.32), due to its compact representa-
tion that emphasizes class-shared features, enhancing gen-
eralization to unseen classes. However, this compactness
leads to a drop in seen class performance, due to the loss of
some detailed information from F. Conversely, increasing
the rank to 119 captures more class-specific details in the re-
constructed features but diminishes the shared information
across classes, leading to poorer unseen class performance.
Consequently, we select the rank of 71 to optimally balance
performance between seen and unseen classes.
VLM Feature Decomposition Constraints We conducted
an ablation study on the constraints for VLM feature de-
composition as shown in Table 3. The first row removes the
orthogonal constraint Lort on the basis features, leading to
1.10 mAP drop among unseen classes compared to the third
row, indicating that the orthogonal constraint helps the basis

Lort Lsparse
mAP

Unseen Seen Full
× ✓ 26.81 34.70 33.60
✓ × 27.47 34.45 33.48
✓ ✓ 27.91 35.09 34.09

Table 3. Ablation study for VLM feature decomposition con-
straints Lort and Lsparse in the unseen-verb zero-shot setting.

Lsem
mAP

Unseen Seen Full
× 27.19 34.68 33.63
✓ 27.91 35.09 34.09

Table 4. Ablation study for semantic loss in the unseen-verb zero-
shot setting.

features capture class-shared information more effectively,
enhancing generalization to unseen classes. Additionally,
removing the sparsity constraint Lsparse (second row) low-
ers both seen and unseen performance, indicating that spar-
sity reduces redundancy in the factorization, leading to a
more compact representation.
Semantic Loss We also design the semantic loss Lsem

to preserve the distribution of pairwise cosine similarity
among VLM text feature of each class. The pairwise co-
sine similarity demonstrates the relationship between HOI
classes indicated by VLM, which, trained on millions of
data, generalizes these relationships to unseen classes. Un-
like the original VLM features, which primarily empha-
size object information and cluster different actions with
the same object together, our method explicitly enhances
action distinctions. To achieve this, we compute similar-
ity only among HOI classes involving the same object, as
shown in Eq.(4), with the mask M excluding interactions
with different objects.

Lsem = DKL[
sim(F̂, F̂)

τ
∗M ∥ sim(F,F)

τ
∗M ]

+DKL[
sim(F̂

ao
, F̂

ao
)

τ
∗M ∥ sim(F,F)

τ
∗M ],

(4)

where we apply a temperature coefficient τ in the KL di-
vergence, setting τ = 0.1 to emphasize action relationships
that are underestimated in the original VLM features. As
shown in Table 4, without Lsem, the overall performance in
the unseen-verb setting decreases from 32.66 to 32.41 mAP,
with a 0.48 mAP drop among unseen classes.
Human-Object Tokens Table 5 presents the ablation study
on interaction prior knowledge generated by the LLM for
human-object tokens fho. In the first row, we remove
this prior knowledge and replace cross-attention with self-



LLM-generated
Prior Knowledge

mAP
Unseen Seen Full

× 27.90 34.58 33.65
✓ 27.91 35.09 34.09

Table 5. Ablation study for LLM description in human-object to-
ken design of the vision branch. “None” means no interaction
prior knowledge generated from LLM.

fhoij
mAP

Unseen Seen Full
fhi

+foj
2 27.37 34.42 33.43

f spatial
hoij

27.59 34.63 33.64
fhi

+foj
2 + f spatial

hoij
27.91 35.09 34.09

Table 6. Ablation study for human-object token design of the vi-
sion branch. “None” means no interaction prior knowledge gener-
ated from LLM.

attention process for fho. The results indicate that inter-
action prior knowledge primarily improves seen-class per-
formance. This is because the interaction prior knowledge
provides all possible human body configurations, object at-
tributes and their spatial relationships. During training, the
model is guided by training data to select knowledge mainly
for seen HOI classes. Consequently, this interaction prior
knowledge does not obviously enhance unseen HOI perfor-
mance.

Table 6 shows the ablation study on the components of
human-object tokens fhoij . As defined in Eq.(1), fhoij con-
sists of two components: human and object appearance fea-
tures

fhi
+foj
2 from DETR and the spatial features f spatial

hoij
from detected human and object bounding boxes. We found
that we need to combine all components in human-object
tokens for the best performance among both seen and un-
seen classes according to the results shown in Table 6.
Image Fusion Table 7 presents the ablation study for the
image fusion module. Removing this module reduces per-
formance from 34.09 to 33.10 mAP, highlighting its effec-
tiveness. The image fusion module adapts and integrates
separate action and object visual features, capturing more
fine-grained information than human-object union region
features. While fh

img , fo
img , and fu

img share the same feature
dimension, fh

img and fo
img focus on smaller, localized re-

gions—human and object separately, rather than their com-
bined union. This processing better preserves action and
object details, ultimately improving performance.
VLM Feature Decomposition and Adaptation Table 8
presents an ablation study on the VLM feature decompo-
sition and adaptation. The first row serves as the baseline,

Image Fusion
mAP

Unseen Seen Full
× 26.46 34.19 33.10
✓ 27.91 35.09 34.09

Table 7. Ablation study for image fusion design in the unseen-verb
zero-shot setting.

W B
mAP

Unseen Seen Full
/ / 23.58 31.55 30.43
W B 25.76 31.35 30.57
W B 25.84 31.19 30.44
W B 22.95 30.30 29.27
W B 25.47 33.59 32.46

Table 8. Ablation study for weights and basis features optimiza-
tion in the unseen-verb zero-shot setting. X denotes applying clas-
sification loss Lcls and feature decomposition loss Lfd in training
to update X. X denotes applying only Lfd. X ∈ {W,B}.

where VLM feature decomposition is not applied, and no
LLM-derived regularization are used. This baseline ensures
that the ablation study specifically analyzes the impact of
VLM feature decomposition. In the second row, we ap-
ply the only feature decomposition loss Lfd to update both
weights and basis features (W, B). This improves un-
seen mAP by 2.18, indicating that feature decomposition
enhances generalization to unseen classes. Applying clas-
sification loss Lcls only to the basis features (W, B), as in
the third row, yields results similar to the second row. In
the fourth row, adding classification loss Lcls, supervised
by ground truths from seen classes together with Lfd in the
training process, to both weights and basis features results
in performance degradation (W, B). This suggests that the
updating of basis features from training data compromises
essential class-shared information necessary for generaliza-
tion, while the weights do not adapt effectively to distin-
guish actions within the HOI setting. The last row shows the
best results, where Lcls is applied only to the weights, while
Lfd is used for both weights and basis features (W, B). This
configuration achieves balanced performance across seen
and unseen classes, improving the seen mAP by 2.04 and
the unseen mAP by 1.89 compared to the baseline.
Weights for each training loss term Loss weights includ-
ing α, β1, β2, β3, β4 introduced in Section 3.4 of the main
paper, are set to keep all loss terms on a comparable scale
during early training, ensuring balanced contributions. Ta-
ble 9 shows an ablation study where we vary one loss weight
at a time while keeping the others fixed, where using com-
parable values for each loss term results in the best overall
performance.
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Figure 2. (a) Weight subset similarity visualization related to
“ride” and “bike” HOI classes, before weight adaptation; (b)
Adapted weight subset similarity visualization related to “ride”
and “bike” HOI classes, after weight adaptation.

α β1 β2 β3 β4
mAP

Unseen Seen Full
320 0.1 0.1 0.001 50 27.50 33.95 33.05
80 0.5 0.1 0.001 50 28.32 34.35 33.50
80 0.1 0.5 0.001 50 28.81 34.64 33.82
80 0.1 0.1 0.005 50 27.12 34.38 33.36
80 0.1 0.1 0.001 250 27.87 33.69 32.88
80 0.1 0.1 0.001 50 27.91 35.09 34.09

Table 9. Ablation study for training loss weights in the unseen-
verb zero-shot setting. In each row, one loss weight is varied while
others remain fixed. The changed value is shown in blue.

Visual Features for Human, Object and Union Regions
We use three visual features from the image feature map
fglb
img for HOI prediction: human (fh

img), object (fo
img), and

union (fu
img) features. Ablation results in Table 10 show

that using all three yields the best performance.

mAP
Unseen Seen Full

H+U 27.92 33.80 32.98
O+U 27.58 33.95 33.06
H+O 27.36 34.81 33.76

H+O+U 27.91 35.09 34.09

Table 10. Ablation study on visual features in the vision branch
under the unseen-verb zero-shot setting. “H”, “O”, and “U” denote
fh
img, fo

img, and fu
img, respectively.

Weight Adaptation Visualization Here, we visualize and
compare the weights W before and after the weight adapta-
tion process, especially focusing on the subset of W applied
with the LLM-derived action regularization, as discussed in
the main paper Section 3.2. The index set for the subset
selection is defined as I = { i | bi ∈ Ba }, where bi is
the i-th row of the matrix B and also belongs to the subset

Ba Before weight adaptation, the subset of W is obtained
by {w′

i | i ∈ I}, where w′
i is the i-th column of the ma-

trix W. After weight adaptation, the subset is denoted as
War = {ŵ′

i | i ∈ I}, where ŵ′
i is the i-th column of the

adapted matrix W.

As shown in Fig. 2 (a), the subset before the weight
adaptation contains limited action-specific information, as
indicated by the low cosine similarities between weights for
HOI classes associated with the action “ride”. This suggests
that shared information specific to the action “ride” is not
well captured. Moreover, the weights for classes involving
the same object, “bike”, show high similarity between each
other, before weight adaptation. This demonstrates that in
the original VLM feature space, actions linked to the same
object tend to cluster together. After our proposed weight
adaptation, the weight subset War show noticeably higher
similarities among classes that share the “ride” action.

3.4. Qualitative Results

We visualize our method’s predictions across four settings
in zero-shot HOI detection of HICO-DET: the unseen-verb
setting in Fig. 3, the rare-first unseen-composition setting
in Fig. 4, the non-rare-first unseen-composition setting in
Fig. 5 and the unseen-object setting in Fig. 6. Our HOLa
successfully identifies unseen HOI classes in various sce-
narios, demonstrating its generalization ability to unseen
HOI classes. This performance is due to our low-rank de-
composed feature adaptation that emphasizes class-shared
information, thereby enhancing generalization to unseen
classes. Additionally, the incorporation of action priors
helps reduce overfitting to seen classes.

3.5. Controlability

While the learned basis features in our low-rank decomposi-
tion is not directly interpretable, our method enhances con-
trollability by restricting adaptation to a low-dimensional
subspace, spanned by basis vectors bi ∈ B. In this sub-
space, explicit structures (e.g., orthogonality) are enforced
and inspected, instead of modifying the features in the full
VLM space.

3.6. Limitations

While our method achieves strong performance in zero-shot
HOI detection, it relies on predefined unseen HOI class
names, a standard requirement in zero-shot protocols [5–
7, 18, 19]. However, this dependency limits flexibility and
scalability in real-world scenarios where such predefined
classes may be unavailable. To address this, our future work
will focus on extending our approach to open-vocabulary
HOI detection [10, 20].
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Figure 3. Visualization of HOI predictions in the unseen-verb setting on HICO-DET. The purple bar indicates predictions for seen HOI
classes and the yellow bar indicates predictions for unseen HOI classes.
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Figure 4. Visualization of HOI predictions in the rare-first unseen-composition setting on HICO-DET. The purple bar indicates predictions
for seen HOI classes and the yellow bar indicates predictions for unseen HOI classes.
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Figure 5. Visualization of HOI predictions in the non-rare-first unseen-composition setting on HICO-DET. The purple bar indicates
predictions for seen HOI classes and the yellow bar indicates predictions for unseen HOI classes.

3.7. Future Work Exploration
In our method, adaptation with low-rank decomposition is
applied to the language branch, specifically on action and
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Figure 6. Visualization of HOI predictions in the unseen-object setting on HICO-DET. The purple bar indicates predictions for seen HOI
classes and the yellow bar indicates predictions for unseen HOI classes.

interaction features, to enhance generalization to unseen
classes. This design leverages the availability of unseen
class text descriptions during training, enabling the model
to incorporate class-shared knowledge from both seen and
unseen HOI classes.

Similar techniques could potentially be extended to ob-
ject features in the language branch or to visual features.
However, in standard two-stage HOI methods [5, 6, 9], ob-
ject detection is typically handled by an off-the-shelf de-
tector. As a result, the primary challenge in HOI detec-
tion lies in modeling unseen actions or novel action-object
pairs, rather than object categories, where object general-
ization is addressed separately in open-vocabulary object
detection. However, applying low-rank decomposition to
object features may offer a promising direction to benefit
open-vocabulary object detection as well.

Furthermore, visual features from unseen classes are
not accessible under the standard zero-shot setting, mak-
ing it infeasible to inject unseen information into the vision
branch during training. Exploring decomposition strategies
in the vision branch under settings with full or partial visual
supervision is another promising avenue for future work.
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