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In this supplementary material, we provide a compre-
hensive evaluation of our INP-CC approach. In Sec. 1, we
present a detailed description of the implementation details
of the proposed method. Next, in Sec. 2, we compare the
model efficiency of our approach with existing methods.
In Section 3, we perform an in-depth analysis of the de-
composition mechanism, the adaptive selection process for
interaction-aware prompts, and the impact of different in-
teraction classifier choices within our model. Sec. 4 show-
cases additional qualitative results to further illustrate the
characteristics of our approach. In Sec. 5, we discuss the
limitations of our method and suggest potential future re-
search directions.

1. Implementation Details

In this section, we present a comprehensive description of
the implementation details of our model. We employ the
ViT-B/16 version as our visual encoder following [1, 3]. We
set the size of the interaction-aware prompt to 128 and 8 on
SWIG-HOI and HICO-DET datasets, respectively. We set
k in the selection mechanism to 2. We set the cluster num-
ber J to 64 and select 10 hard negative samples during each
iteration. The number of layers of the HOI decoder is set to
4. We set the cost weights Ay, Ajou, Acis and Ag to 5, 2, 5,
and 5 during training. We use focal loss [2] for interaction
classification to counter the imbalance between positive and
negative examples. We set y to 2 during inference. We in-
troduce 8 prefix tokens and 2 conjunctive tokens to connect
the words of human actions and objects following [3] when
constructing 7},; introduced in Sec. 3.1. We set the batch
size as 16 with a learning rate of 10~ and use the Adam
optimizer with decoupled weight decay regularization. We
train our model for 80 epochs with a batch size of 128 on 2
NVIDIA 3090 GPUs.
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Method #Params #FLOPs mAP
THID [3] 239.08M  53.28G  13.26
CMD-SE [1] 227.779M  42.99G 15.75
INP-CC (Ours) 228.98M 28.45G 16.74

Table 1. Model statistics.

Pc IE’IT Non-rare Rare Unseen  Full
h.r. - 21.41 15.02 10.12 15.30
l.r. - 20.57 15.11 10.53 15.25

haor.  hor. 22.01 16.13 10.71  16.31
ho. L. 22.84 16.74 11.02 16.74
lor. L 21.66 1620 10.73  16.19

Table 2. Ablation of the low-rank decomposition of interaction
prompts on the SWIG-HOI dataset. Pc: common prompts. Pro:
interaction prompts. h.r.: naive high-rank implementation. [.r.:
low-rank decomposition.

2. Model Efficiency

We further compare the computational cost of our model
with previous open-vocabulary HOI detectors [1, 3] on the
SWIG-HOI dataset in Tab. 1, emphasizing the advantages
of our approach. Specifically, we use fvcore to compute
the FLOPs of each model and count their parameter num-
bers. For consistency, a batch size of 1 is used for all
models when calculating FLOPs. Our proposed INP-CC
demonstrates superior efficiency, requiring fewer FLOPs
than CMD-SE [1], despite having a similar number of pa-
rameters. While CMD-SE’s multi-level decoding results
in higher FLOPs, our model leverages interactive-aware
prompts to achieve better performance with a more com-
putationally efficient design.



(b) Lighting cigarett.

(d) Signing document.

(e) Distributing gift.

(f) Watering tree.

Figure 1. Qualitative Examples.

k Non-rare Rare Unseen Full

1 22.30 1593 1136 16.29
2 22.84 16.74 11.02 16.74
4 22.89 16.17 10.86 16.42

Table 3. Ablation of the selection mechanism. k: the number of
selected interaction prompts.

Unseen  Full

Thoi 21.90 16.22 10.73  16.25
Thoi + This 22.84 16.74 11.02 16.74

Classifier =~ Non-rare  Rare

Table 4. Ablation of the interaction classifier choice.

Knowledge Base Non-rare Rare Unseen  Full

ConceptNet 21.02 1447 10.63 14.83
WordNet 21.15 14.62 1071  14.92
GPT (Ours) 22.84 16.74 11.02 16.74

Table 5. Performance comparison on different knowledge bases.

Strategy Non-rare Rare Unseen  Full

Object-based [4] 22.24 15.81 10.36  15.96
Semantic-based 22.84 16.74 11.02 16.74

Table 6. Ablation of the hard negative strategy.

3. Ablation Study

In this section, we empirically investigate the sensitivity of
the proposed method to the low-rank decomposition and the
selection mechanism, and the effect of different classifiers
on the open-vocabulary SWIG-HOI dataset. Specifically,
besides the four aspects of INP-CC we have discussed in

read book read book
conf: 0.21 conf: 0.59

eat cake drink with glass
conf: 0.38 conf: 0.45

Figure 2. Qualitative examples to previous SOTA (CMD-SE).

Sec. 4.3, we further ablate on (1) the importance of the
low-rank decomposition mechanism, (2) the topk selection
mechanism, (3) the interaction classifier choice, (4) the ex-
ternal knowledge base, and (5) the hard negative strategy.

Low-rank Decomposition. We analyze the significance
of the low-rank decomposition mechanism in Tab. 2. Our
findings are as follows: (1) As seen in lines 1-2, when
only common prompts are used, the high-rank (h.r.)
method achieves slightly better performance than the low-
rank (I.r.) method on non-rare interactions, but performs
slightly worse on rare and unseen interactions. Overall,
h.r. achieves a full mAP of 15.30, marginally outperform-
ing l.r.’s 15.25. This suggests that, in the absence of
interaction-specific prompts, the high-rank method has a
slight edge, likely due to the loss of expressive power in
the low-rank method when not tuned for specific interac-
tions. (2) Incorporating interaction-specific prompts signif-
icantly boosts performance across all categories, regardless
of the decomposition method. For example, using h.r.+h.r.
improves full performance from 15.30 to 16.31. Notably,
the combination of h.r. for Po and [.r. for PIT yields the
best overall results, demonstrating that low-rank decompo-
sition for interaction-specific prompts enhances the repre-
sentation of nuanced interactions, especially for rare and
unseen cases. (3) When both common and interaction-



specific prompts are processed with low-rank decomposi-
tion (l.r.+l.r.), there is a slight drop in full performance,
from 16.74 (h.r.+l.r.) to 16.19. This indicates that while
low-rank decomposition is effective for interaction-specific
prompts, high-rank decomposition for common prompts
provides a stronger foundational representation, helping to
preserve global context.

Topk Selection Mechanism. Tab. 3 illustrates the impact
of the number of selected interaction prompts (k) on model
performance. Our findings reveal the following trends: (1)
Non-rare classes: Performance improves as k increases,
peaking at k = 4 (22.89), indicating that additional prompts
better capture common interaction patterns. (2) Rare and
Unseen classes: The best performance is achieved at k = 2.
A single prompt (k = 1) lacks sufficient diversity, while
too many prompts (k = 4) introduce redundancy or noise,
leading to suboptimal outcomes. (3) Overall performance
(all classes): k = 2 yields the highest overall score (16.74),
effectively balancing the trade-offs across Non-rare, Rare,
and Unseen categories. In conclusion, selecting k& = 2 of-
fers the optimal balance between specificity and general-
ization, particularly benefiting Rare and Unseen scenarios
while maintaining competitive performance for Non-rare
classes.

Interaction Classifier Choice. In Tab. 4, we present the ab-
lation results for the interaction classifier choice, comparing
the performance of two configurations: (1) T},,; only: This
uses the CLIP text encoder to encode action and object to-
kens along with learnable tokens following [3]. (2) The; +
T,is: This combines the T},,; embeddings with the Instruc-
tor Embedding derived from the language model descrip-
tion. We find that the addition of the Instructor Embedding
(T%;s) consistently improves performance across the differ-
ent categories. The overall gains suggest that 7),;; enhances
the model’s ability to handle a broader range of interactions,
especially those it hasn’t encountered during training.
External knowledge bases. We compare different external
knowledge sources to assess their suitability for HOI con-
texts in Tab. 5. While ConceptNet and WordNet provide
structured commonsense knowledge, they are not specifi-
cally designed for HOI tasks. By evaluating their coverage
using SWIG-HOI labels, we observe that 11.75% of HOI
concepts are missing in ConceptNet, and 11.54% are ab-
sent in WordNet. For the uncovered cases, we default to
using the original HOI names. As shown in Tab. 5, our
GPT-based generative approach outperforms both Concept-
Net and WordNet, demonstrating superior contextual rea-
soning and generalization capabilities.

Hard negative strategy. We investigate the impact of the
hard negative sampling strategy with [4]. Unlike the object-
based negative sampling of [4], which focuses on object-
level interactions, our method utilizes semantic clustering to
identify similar interactions—across different object types

(e.g., “hold paintbrush” vs. “hold pen”). These hard neg-
atives encourage the model to focus on fine visual details,
such as hand position or object shape, which helps it prior-
itize more essential cues for distinguishing between sim-
ilar interactions. This approach is particularly beneficial
when generalizing to unseen interactions that involve sub-
tle differences between categories. As shown in Tab. 6, our
method outperforms [4] by 0.78%, validating the advantage
of using semantic-based negative sampling.

4. Qualitative Examples

In Fig. 1, we showcase more scenarios to demonstrate our
model’s robust performance in detecting diverse HOIs. The
left images show accurate predictions with well-localized
bounding boxes, while the right attention maps highlight
regions critical for each interaction. For instance, the model
successfully focuses on the tattoo needle and skin (Fig. 1a),
the cigarette under low lighting (Fig. 1b), the pen-paper in-
teraction during signing (Fig. 1d), and the hose used for wa-
tering a tree (Fig. 1f). These results highlight the model’s
ability to generalize across scenes and capture fine-grained
human-object relationships, enabled by interaction-aware
prompts and concept calibration.

We further present additional qualitative comparisons
with the previous state-of-the-art CMD-SE model in Fig. 2.
The figure demonstrates that our model exhibits superior
attention to critical regions, such as the eyes (row 1), and
more effectively distinguishes fine-grained actions, such as
drinking versus eating (row 2).

5. Limitations

While negative sampling enhances the model’s ability to
distinguish between visually similar but semantically dis-
tinct actions, it may introduce challenges if the selected
negative samples fail to effectively represent real-world sce-
narios. This could result in biases or overfitting to spe-
cific types of negative samples. In the future, we plan to
explore semi-supervised or self-supervised approaches for
enhanced inter-modal similarity modeling, which could im-
prove performance. Future research could also focus on im-
proving the model’s ability to generalize across various do-
mains (e.g., social media images, surveillance footage, etc.),
which often present different visual characteristics and in-
teraction types. We believe these improvements will lead to
better overall performance, making our method more prac-
tical for real-world applications.
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