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Supplementary Material

In this supplementary material, we provide additional ex-
perimental details and results for SAIL.

6. Additional Experimental Details

Training Configurations. In this section, we provide the
corresponding setups for our experiment series in the main
paper, including the default setting, the data scaling series,
the model scaling series, and ablation experiment settings.
The detailed configurations are shown in Table 17.
Evaluation Configurations. In the main paper, we
measure the model performance on several bench-
marks: VQAv2 [27], GQA [35], ScienceQA-IMG [51],
TextVQA [64], POPE [43], MME [45], MMBench [49],
and SEEDBench-IMG [39]. We normalized the perfor-
mance to a full score of 100 and averaged the performance
across these benchmarks to plot the curves shown in Fig-
ure 1(A) and Figure 3. The detailed experimental results
are shown in Table 16.

7. Additional Experimental Results

Additional Experiments on Data Scaling. In Section 4.3,
we compared SAIL with its modular MLLM counterpart in
terms of data scaling capability. For the modular MLLM
baseline, we employed SigLIP-SO [84] as the vision en-
coder while maintaining identical architecture and initial-
ization parameters for the language model component as
SAIL. Both models underwent Pretraining stage-1 with
identical settings, where SAIL processed 32M, 128M, and
512M image-text pairs respectively, with all parameters be-
ing trainable during pretraining. Here, our purpose was to
test whether SAIL can match a strong modular MLLM by
scaling up pretraining data. To this end, we used a strong
pretrained ViT in the modular MLLM and ensured both
models saw the same amount of data. This strict setup al-
lows us to justify SAIL ’s effectiveness if it achieves com-
parable performance.

Additionally, we conducted complementary experiments
under a modified configuration. In this setup, both SAIL
and the modular MLLM’s ViT were pretrained on identical
image-text pairs from the same data sources. The modular
MLLM subsequently underwent an alignment phase using
LLaVA-558K [48] to train its projector. Both models then
received identical supervised fine-tuning (SFT) on the same
downstream data. As in Figure 5, SAIL outperforms the
modular MLLM at 128M pretraining data and demonstrates
better data scaling.

Figure 5. Data scaling curve. For the experiment setting, both
SAIL and the ViT of the modular MLLM were trained from scratch
with the same amount and source of image-text pair data.

Additional Experiments on ARO. We add several VLMs
for ARO in Table 8: all achieve near-perfect performance,
showing that current VLMs are effective at recognizing ob-
ject attributes and relationships. Combined with our image
classification and segmentation results, this further high-
lights SAIL ’s strong visual capabilities compared to both
leading vision models and VLM baselines.

Model Rel Attr C.Ord F.Ord
LLaVA-ov-7B 98.8 99.2 97.8 100.0
Qwen2VL-7B 98.4 99.2 100.0 100.0
EVEv2 94.4 98.8 99.9 100.0
SOLO 96.5 98.6 95.7 96.7
SAIL 100.0 99.5 100.0 100.0

Table 8. Performance on ARO (%).

Measure SAIL’s Language Capabilities. As demonstrated
in Table 9, multimodal pretraining causes some drop in lan-
guage performance compared to the original LLM. How-
ever, as more text data in pretraining is included, SAIL ’s
language ability improved.

Model ARC-e HellaSwag PIQA naturalQA-5 triviaQA-5
Mistral-7B 80.0 81.3 83.0 29.1 69.9
SAIL-128M 68.8 76.7 79.4 23.8 59.3
SAIL-512M 71.2 77.9 79.8 25.6 63.8

Table 9. Language capability performance (%).

Vision Task Performance at Different Stages. We evalu-
ated SAIL after Pretraining Stage 2 and SFT in Table 10.
SAIL-S2 shows slight improvement over SAIL-S1, likely
due to more seen data. SAIL-SFT maintains strong classifi-
cation performance but shows some drop in segmentation,
likely due to adaptation to downstream tasks during SFT,
but it still outperforms other VLMs in Table 3.



SAIL-S2 SAIL-SFT
cls@1 cls@5 mIoU mAcc aAcc cls@1 cls@5 mIoU mAcc aAcc
86.28 97.92 56.28 67.83 85.12 83.77 97.38 46.18 57.76 80.92

Table 10. Vision task performance across different stages (%).

A Comparison of SAIL and LLaVA-1.5. In this section,
we conduct an experiment to compare SAIL with LLaVA-
1.5 [46]. In this experiment, our SAIL is trained on 512M
image-text pairs in Pretraining Stage 1, followed by fine-
tuning on the LLaVA-mix-665K dataset. To fairly compare
the performance of the two models, we do not use the anyres
strategy during SFT. Instead, we adopt the same image pro-
cessing approach as LLaVA-1.5, ensuring that the aspect
ratio and number of image tokens are consistent across both
models.

The experimental results are presented in Table 11. De-
spite our model being trained on only 512M image-text
pairs, which is significantly smaller than the CLIP pretrain-
ing data used in the LLaVA-1.5 model, the results show that
our model achieves comparable performance to LLaVA-1.5
across various benchmarks. Remarkably, our model even
outperforms LLaVA-1.5 on specific benchmarks such as
DocVQA and ChartVQA.

These findings highlight the strong potential of Single
Transformer models in terms of data scaling. Specifically,
they suggest that even with a relatively smaller pretrain-
ing dataset, Single Transformer models can perform on par
with, or even exceed, more extensively trained modular
MLLMs like LLaVA-1.5 when similar preprocessing and
controlled variables are applied.
Compare SAIL and LLaVA on MMVP. We compare SAIL
and LLaVA-1.5 [46] on MMVP [69] to dissect the behavior
of the two models. The results are shown in Figure 6. From
examples (A) and (B), we observe that SAIL performs better
in perceiving minor regions and objects. Examples (C) and
(D) illustrate that SAIL can more accurately distinguish the
states of objects.
Additional Experiments on Information Flow Pattern
Analysis. In the main paper, we analyzed the distribu-
tion patterns of image attention scores for different Sin-
gle Transformer-based MLLMs and modular MLLMs. The
results showed that Single Transformer-based MLLMs al-
locate more attention weights to image tokens. However,
this could be due to different models processing varying
numbers of image tokens, where more image tokens lead
to higher aggregated attention scores.

To analyze this in a more controlled manner, we de-
signed an additional experiment. Using the data scaling
setup at 512M, we pretrained SAIL and its modular MLLM
counterpart. After pretraining, we fine-tuned both models
using the LLaVA-mix-665K dataset, fixing the resolution
size to 224x224 during SFT, instead of using any resolu-
tion.

The results, shown in Figure 7, reveal that SAIL allocates
higher attention scores to image tokens across all trans-
former layers compared to the modular MLLM, particu-
larly in medium layers (+43.5% in layer 14) and deep layers
(+41.2% in layer 31).

From this, we can conclude that Single Transformer-
based MLLMs tend to allocate a significant portion of at-
tention to previous image tokens during prediction. In con-
trast, modular MLLMs allocate a smaller portion of their
attention directly to image tokens, indicating a less image-
centric approach in their prediction mechanism.
Attention Map Visualization. In the main paper, we found
that Single Transformer-based MLLMs allocate a large por-
tion of attention weights to image tokens during inference,
indicating a more vision-centric model. Here, we visualize
the attention distribution of SAIL across different regions of
the image when predicting tokens.

The results in Figure 8 illustrate the attention maps for
specific tokens to the image portion when SAIL gener-
ates predictions for multimodal queries. The visualizations
show that in the early transformer layers, the predicted to-
kens primarily focus on the salient regions of the image. As
the model progresses to deeper layers, the attention shifts
to areas more relevant to the predicted tokens. This behav-
ior demonstrates that SAIL has the potential to function as
a grounding model, effectively correlating text tokens with
their corresponding image regions.

In other words, during inference, the model incremen-
tally concentrates attention weights on relevant regions, aid-
ing in decision-making. This progressive focusing of atten-
tion signifies the model’s capability to ground text tokens
in the corresponding visual context, enhancing its perfor-
mance in vision-language tasks.
Visual Understanding Demonstration. We investigate
several vision perception and reasoning capabilities of our
SAIL. These include its ability to understand rich OCR in-
formation (Table 12), interpret real-world scenes (Table 13),
comprehend scientific charts (Table 14), and analyze poster
contents (Table 15).



Method Pretrain SFT VQAv2 GQA SciQA-IMG TextVQA POPE MMBench SEEDBench DocVQA ChartQA AI2D MMStar avg

LLaVA-1.5-336px [46] 12.8B+558K 665K 78.5 62.0 66.8 58.2 85.9 64.3 66.1 28.1 18.2 54.8 32.4 58.3
SAIL 512M 665K 77.8 61.6 68.0 56.4 86.6 61.3 69.8 29.3 21.5 58.7 37.1 59.1

Table 11. Comparison of SAIL and LLaVA1.5. We evaluate the models on VQAv2 [27], GQA [35], ScienceQA [51], TextVQA [64],
POPE [43], MMBench [49], SEEDBench [39], DocVQA [55], ChartQA [54], AI2D [38] and MMStar [9].

(A) Are there patterns on the easter eggs?
GT: Yes; No

SAIL: Yes; No

LLaVA1.5: Yes; Yes

(B) Are there any words displayed on the vehicle’s lightbar?
GT: Yes; No

SAIL: Yes; No

LLaVA1.5: Yes; Yes

(C) Are the birds flapping upward or downward?
GT: Upward; Downward

SAIL: Upward; Downward

LLaVA1.5: Upward; Upward

(D) Is the elephant’s trunk raised or lowered?
GT: Raised; Lowered

SAIL: Raised; Lowered

LLaVA1.5: Lowered; Lowered

Figure 6. Comparison of SAIL and LLaVA-1.5 on MMVP examples. SAIL demonstrates better performance in perceiving minor regions
and objects, as well as more accurately distinguishing object states.
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Figure 7. Image attention score allocation for SAIL and its modular MLLM counterpart. We compared the attention score allocation
distribution for shallow layers, medium layers, and deep layers between these two models. The Single Transformer-based MLLM model
significantly allocates a higher proportion of attention score to image tokens during prediction than the modular MLLM.



Query: When was the travel agency founded? 

Output token: “2”, Layer 2 Output token: “2”, Layer 25 

Query: What color is the Bicycle? 

Output token: “red”, Layer 0 Output token: “red”, Layer 31 

Figure 8. Visualization of SAIL’s attention distribution across image regions during token prediction. In early transformer layers,
attention primarily focuses on the salient regions of the image. As the model progresses to deeper layers, attention shifts to areas more
relevant to the predicted tokens.



Example 1: Understanding OCR Information in Webpage.

User Please output all the text information.

SAIL Cornell University arXiv cs arXiv:2304.08485 Computer Science Computer Vision and Pattern Recognition
Visual Instruction Tuning HaoTian Liu, Chunyuan Li, Qingyang Wu, Yong Jae Lee Instruction tuning large language models
(LLMs) using machine-generated instruction-following data has improved zero-shot capabilities on new tasks, but the idea is less
explored in the multimodal field. In this paper, we present the first attempt to use language-only GPT-4 to generate multimodal
language-image instruction-following data. By instruction tuning on such generated data, we introduce LLM for general-purpose
visual and language visual and language this http URL URL Early Experiments: LLMs demonstrate impressive multimodel chat
abilities, sometimes exhibiting the behaviors of multimodal GPT-4 on a synthetic multimodal instruction-following dataset.
When fine-tuned on Science QA, the synergy of LLAVA and GPT-4 achieves a new state-of-the-art accuracy of 92.53%. We
make GPT-4 generated visual instruction tuning data, our model and code base publicly available. Comments: NeurIPS 2023
Oral; project page: this https URL Subjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI);
Computation and Language (cs.CL); Machine Learning (cs.LG) Cite as: arXiv:2304.08485 [cs.CV] (or arXiv:2304.08485v2
[cs.CV] for this version) https://doi.org/10.48550/arXiv.2304.08485 Submission history From: Haotian Liu [view email] [v1]
Mon, 17 Apr 2023 17:59:25 UTC (4,360 KB) [v2] Mon, 11 Dec 2023 17:46:14 UTC (4,985 KB)

Table 12. SAIL demonstrates a strong capability to extract information in OCR-rich scenarios.



Example 2: Understanding Real-World Scene.

User Please describe the image in detail.

SAIL There are several notable elements in the image:
1. The highway is multi-lane, with multiple lanes visible. 2. The traffic is dense, with vehicles in various lanes. 3. The weather
seems to be overcast, as indicated by the grayish tones of the image. 4. There are several traffic signs and signs visible, including
a green highway sign indicating “1/2 mile” to the right, and a green sign with the number “16” and the word “MILE” on the
left side of the image. 5. The background includes a hill or mountain, with trees and greenery visible. 6. There are also several
power lines and electrical pylons visible along the sides of the highway. The image’s focus is on the traffic and the surrounding
environment. The vehicles are primarily in the center and right lanes of the highway, with some vehicles in the left lanes as well.
The highway is flanked by lush greenery, including trees and grassy areas, suggesting that this is a rural or possibly a suburban
area. The traffic appears to be moving at a moderate pace. The weather conditions suggest that this is a daytime scene, possibly
during the morning or late afternoon. The image is taken from a perspective that suggests the viewer is in a vehicle on the
highway, observing the traffic ahead. In summary, the image captures a typical highway scene with moderate traffic, surrounded
by a mix of natural and built environments, under an overcast sky. The road is in good condition, and the vehicles are traveling
smoothly in both directions.

Table 13. SAIL demonstrates a strong capability about understanding the real-world scene.



Example 3: Understanding the Scientific Charts.

User Please describe the image in detail.

SAIL This image is a collage of various objects, foods, and animals, all of which are predominantly blue or have blue elements. The
image is divided into sections labeled with letters from A to O. Here is a detailed description of each section: 1. A - Pumpkin: A
blue pumpkin is depicted, which is a common symbol associated with autumn and Halloween. 2. B - Fish: A blue fish is shown,
which could be a representation of a common aquatic animal. 3. C - M&M: A blue M&M candy is present.4. D - Milk and
Soap: A glass of milk, a bar of soap, and a blue sponge.5. E - Bread and Jelly Beans: Blue wheat, a blue loaf of bread, and blue
jelly beans.6. F - Castor Oil: A bottle of castor oil.7. G - Cheerios and Snacks: A box of Cheerios, a glass of a dark blue drink,
a blue popsicle, a blue donut, and a blue muffin. 8. H - Vegetables: A collection of vegetables including a blue cucumber, green
leafy vegetables, and a bunch of blue carrots.9. I - Apple and Stones: A green apple, a blue candy, and blue stones.10. J - Syrup
and Candy: Sugar cubes, a bottle of blue syrup, and a blue candy bar.11. K - Coconut and Aloe: A blue coconut, a bottle of blue
liquid, and a blue aloe vera plant.12. L - Pineapple and Juice: A blue pineapple, a blue banana, and a glass of blue juice.13. M -
Candy Bar: A blue candy bar.14. N - Blueberries: Blueberries.15. O - Oval Object: A blue oval-shaped object.

Table 14. SAIL demonstrates a strong capability about understanding the scientific charts.



Example 4: Understanding Poster Content.

User Please describe the image in detail.

SAIL At the top of the image, there is a decorative border with a pattern of hanging golden ornaments, which adds a festive and
celebratory feel to the overall design. The background is plain white, which helps the colorful elements stand out.
In the center of the image, the text “Happy Sankranti” is prominently displayed in a large, elegant, and stylized font. The text is
in a warm orange color, which is traditionally associated with the festival.
Below the text, there is a depiction of a woman dressed in traditional Indian attire, likely a saree, in shades of blue and green.
She is engaged in the act of preparing a traditional Sankranti sweet, which is a common practice during the festival. The sweet is
shaped like a pyramid and is decorated with intricate patterns, reflecting the artistic and cultural heritage of the region.
To the left of the woman, there is a three-tiered pot, known as a “patala”, which is a traditional Indian cooking vessel. The pot is
adorned with a colorful design and is placed on a colorful circular mat, which is also a traditional element in Indian households.
On the right side of the woman, there is a small hut with a thatched roof, which is a common architectural style in rural Indian
villages. The hut is depicted in a simple and rustic manner, emphasizing the rural and traditional aspect of the scene.
Overall, the image captures the essence of the Sankranti festival, highlighting the cultural and religious aspects of the celebration.
The use of traditional clothing, the preparation of traditional sweets, and the depiction of a rural village scene all contribute to a
sense of cultural authenticity and celebration.

Table 15. SAIL demonstrates a strong capability about understanding the poster content.



Model VQAv2 GQA SciQA-IMG TextVQA POPE MME MMBench SEEDBench-IMG Norm.AVG
Figure 1, modular MLLM, 32M 76.96 58.7 68.48 58.68 88.17 1599 69.44 70.31 61.41
Figure 1, modular MLLM, 128M 78.47 59.78 70.05 59.82 86.78 1638 68.57 68.11 61.52
Figure 1, modular MLLM, 512M 80.06 62.38 70.34 57.85 83.14 1379 70.82 69.83 61.86
Figure 1 & 5, SAIL, 32M 70.51 57.95 63.32 31.67 81.77 1421 48.22 61.51 51.93
Figure 1 & 5, SAIL, 128M 76.36 60.93 62.61 56.86 85.5 1458 53.94 66.60 57.91
Figure 1 & 5, SAIL, 512M 78.51 62.06 67.48 63.94 86.04 1530 56.71 68.83 60.51
Figure 3, SAIL-3B 67.3 53.2 63.8 30.9 66.9 820.8 44.6 55.4 47.80
Figure 3, SAIL-0.5B 59.1 46.9 59.6 20.1 59.8 761.45 38.5 35.1 39.92
Figure 5, modular MLLM, 32M 70.60 58.03 65.83 29.63 82.68 1486 50.02 62.12 52.43
Figure 5, modular MLLM, 128M 74.52 61.22 66.24 48.27 85.20 1489 52.76 64.98 56.72
Figure 5, modular MLLM, 512M 76.20 63.04 67.23 56.87 85.50 1513 54.01 66.20 58.70

Table 16. Detailed experimental results in the paper.

Exp Model LLM Stage 1 Stage 2 SFT
Data LR Data LR Data LR

Figure 1(A) SAIL, point 32M Mistral-7B-v0.1 Standard Stage 1 Data (32M image-text pairs) (5e-5, 5e-6) - - LLaVA-mix-665K (1e-5,0)
Figure 1(A) SAIL, point 128M Mistral-7B-v0.1 Standard Stage 1 Data (128M image-text pairs) (5e-5, 5e-6) - - LLaVA-mix-665K (1e-5,0)
Figure 1(A), Table 6 SAIL, point512M Mistral-7B-v0.1 Standard Stage 1 Data (512M image-text pairs) (5e-5, 5e-6) - - LLaVA-mix-665K (1e-5,0)
Figure 1(B), Table 2 SAIL Mistral-7B-v0.1 Standard Stage 1 Data (512M image-text pairs) (5e-5, 5e-6) Standard Stage 2 Data (1e-5, 5e-6) Standard SFT Data (1e-5, 0)
Table 3, 4, 5 SAIL Mistral-7B-v0.1 Standard Stage 1 Data (512M image-text pairs) (5e-5, 5e-6) - - - -
Figure 3, Table 7 SAIL-0.5B Qwen2.5-0.5B Standard Stage 1 Data (128M image-text pairs) (5e-4, 5e-6) - - LLaVA-mix-665K (1e-5, 0)
Figure 3 SAIL-3B Qwen2.5-3B Standard Stage 1 Data (128M image-text pairs) (1e-4, 5e-6) - - LLaVA-mix-665K (1e-5, 0)
Figure 3 SAIL-7B Mistral-7B-v0.1 Standard Stage 1 Data (128M image-text pairs) (5e-5, 5e-6) - - LLaVA-mix-665K (1e-5,0)

Table 17. Experimental Configurations for Various Setups. The table lists the models used, the specific LLM variants, the datasets,
and learning rates (LR) applied during each training stage (Pretraining Stage 1, Pretraining Stage 2, and SFT). “Standard Stage 1 Data”,
“Standard Stage 2 Data” and “Standard SFT Data” are listed in Table 1. Specific points and tables/figures referred to in the text are also
indicated.
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