
Occupancy Learning with Spatiotemporal Memory

Supplementary Material

A. Implementation Details
In this section, we provide implementation details of the
proposed ST-Occ and experimental setup.

A.1. Spatiotemporal Memory
Our spatiotemporal memory M has a channel size of CG =
101, which includes historical representation with 80 chan-
nels, historical class activations c with 18 channels, occu-
pancy flow with 2 channels, and averaged log variance with
1 channel.

The spatial dimension HG,WG is determined at the be-
ginning of each scene according to the ego-motion, and
ZG = Z = 8. From an analytical perspective, recurrent-
based or stack-based approaches require O(kHWZ) mem-
ory to store the historical frame representations, where k
is the number of timesteps used (e.g., k = 40 for 20s at
FPS 2, or k = 200 at FPS 10). In contrast, our tem-
poral modeling needs O ((1 + ∆)HWZ) memory, where
∆ represents the relative volume change and it is much
smaller than k. For example, in all nuScenes samples,
∆mean = 3.25,∆max = 16.75, and ∆min = 0.56 over a
20-second duration and it is FPS-agnostic. In other words,
our method requires, on average, only 1

10 of the memory
compared to queue-based approaches and at most 1

2 of the
memory in the worst case.

A.2. Feature Sampling
The feature sampling operation χ[·] is used to ex-
tract the ego vehicle-centered representation at times-
tamp t from our spatiotemporal memory Mt given
the ego vehicle pose Tt. For the voxel grid G ={
p ∈ R3 | p = (x, y, z), x ∈ [0,W ), y ∈ [0, H), z ∈ [0, D)

}
with the ego vehicle in the center, we use the ego pose ma-
trix Tt ∈ R4×4 provided in the dataset for transformation.
We first express p in homogeneous coordinates as

p̃ =
[
x y z 1

]T
. (19)

We then transform the ego vehicle-centered grid into our
spatiotemporal memory coordinate system according to

GM =
{[

T ·
[
x y z 1

]T ]
1:3

| (x, y, z) ∈ G
}
. (20)

We use this transformed grid for sampling via trilinear inter-
polation. The sampled representation is then used for down-
stream occupancy prediction.

When updating the spatiotemporal memory with ego
vehicle-centered representation or temporal attributes, the
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Figure A. The temporal consistency evaluation results of each
class. FB-OCC is set as the baseline, followed by different set-
tings of our method. We compute the relative mSTCV reduction
with respect to baseline (the lower the better). Thus the results for
FB-OCC are all 1s.

process follows

χ[Mt+1⟨value⟩, Tt] = valuet. (21)

We first determine the corresponding region of interest
(RoI) in scene-centered coordinates. For each voxel in the
RoI, its location is transformed into ego vehicle-centered
coordinates using the inverse ego pose T inv

t . Then we per-
form grid sampling with bilinear interpolation to ensure ac-
curate feature retrieval. This process ensures that each his-
torically traversed location in the spatiotemporal memory is
updated, thereby mitigating misalignments caused by coor-
dinate transformations.

A.3. Memory Attention

Our memory attention consists of 3 temporal self-attention
(TSA) layers [15], each performing operations in the se-
quence of self-attention, normalization, feedforward, and
normalization. A 3D learnable position embedding is added
to the query. For the deformable attention in the self-
attention operation, we use four sampling points for each
reference point corresponding to the query.

The network used to encode temporal attributes is a 4-
layer Multi-Layer Perceptron (MLP) with hidden sizes 64,
32, 16, and 1, respectively. The encoded temporal attributes
u and occupancy flow f are shared across all three TSA
layers.

Our method applied a three-layer convolutional network
on ego vehicle-centered representation for occupancy flow
prediction. It achieves an mAVE of 0.618, which is on par
with existing methods [22] and ensures its reliability and
efficiency.



B. Temporal Consistency

Our memory attention, equipped with uncertainty aware-
ness, also results in better temporal consistency of the oc-
cupancy prediction. Results in Tab. 2 show that uncer-
tainty awareness contributes an additional 2% improvement
in temporal consistency by reducing mSTCV. This high-
lights the effectiveness of uncertainty modeling in mitigat-
ing noise accumulation.

To further demonstrate the effectiveness of our design in
reducing temporal inconsistencies in occupancy prediction,
we evaluate temporal consistency across individual classes
in Fig. A. Results reveal a 40% reduction in temporal incon-
sistency for static classes with our memory attention. With
the uncertainty and dynamic awareness incorporated, our
ST-Occ can further reduce inconsistency for certain classes.
The decrease in temporal inconsistency is consistent with
the increase in occupancy prediction regarding various ob-
ject classes. Notably, classes such as barrier, traffic cone,
and drivable surface, which exhibit lower temporal incon-
sistency, also achieve higher occupancy prediction accuracy
than the baseline. These findings not only verify the effec-
tiveness of our method but also highlight the importance of
reducing temporal inconsistency in occupancy prediction,
thereby providing more reliable and robust predictions for
downstream tasks.

C. Historical Occupancy Prediction

To evaluate the models’ performance in preserving and uti-
lizing historical information, we extend the original occu-
pancy prediction evaluation scope while maintaining the
mIoU metric unchanged. During the evaluation, we in-
cluded not only the visible voxels in the current timestamp
but also any invariant voxels visible in the previous times-
tamp. Voxels corresponding to dynamic objects in historical
frames are excluded to ensure evaluation consistency. Fur-
thermore, these historically visible invariant voxels can be
incorporated during training to enhance occupancy learn-
ing.

The results in Tab. A demonstrate that including histori-
cally visible voxels in the evaluation leads to a lower mIoU
score than the original setting, as accurately predicting these
voxels is inherently more challenging. Despite this harder
evaluation, our proposed ST-Occ outperforms the FB-OCC
by a margin of 5%. Additionally, when historically vis-
ible voxels are incorporated during training, our method
achieves the highest performance on the extended evalua-
tion scope. The observed performance improvement in FB-
OCC indicates that training with historically visible voxels
benefits the occupancy prediction.

Method mIoU mIoU†

FB-OCC 39.11 33.71
ST-Occ 42.13 35.34

FB-OCC‡ 40.06 35.78
ST-Occ ‡ 41.62 36.96

Table A. Historical occupancy prediction results on the extended
Occ3D benchmark. † denotes evaluation with historically visible
voxels included. ‡ incorporates historically visible voxels during
training.
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Figure B. Training curve of our ST-Occ and Memory Attention
compared to FB-OCC. Our approach demonstrates faster conver-
gence while achieving impressive performance.

D. Training Analysis
Fig. B illustrates the training curve of our method compared
with the baseline. While our method slightly underperforms
FB-OCC [16] during the initial epochs, this is attributed to
the more complex network architecture deployed for tempo-
ral fusion. However, our method demonstrates faster con-
vergence and performs comparable to FB-OCC in nearly
half the training epochs. In the end, the ST-Occ delivers
impressive performance with significant performance im-
provements.

E. Visualization
E.1. Uncertainty
We visualize uncertainty estimated by our method in Fig. C,
where dynamic, occluded, and unobserved voxels have
higher uncertainty while observed regions show lower un-
certainty.

E.2. Occupancy Prediction
We present visualizations of ego vehicle-centered and
scene-level occupancy prediction done by the proposed
method on additional large-scale scenes in Fig. D. Our



(a) ST-Occ Prediction (Ego Veh.) (b) Uncertainty from ST-Occ

Figure C. Visualization of uncertainty in ST-Occ.

method can produce precise occupancy predictions and con-
struct a comprehensive scene representation.

The minor inconsistencies observed between ego
vehicle-centered and scene-level prediction (particularly ev-
ident in frame 20 of Fig. Diii and Fig. Div) can be attributed
to two factors: 1) Continuous Updates. The RoI regard-
ing each frame in the spatiotemporal memory is updated
incrementally by subsequent frames with additional obser-
vations. 2) Dynamic Instances. Our pipeline does not incor-
porate explicit dynamic object masking in the spatiotempo-
ral memory. Instead, we rely on memory attention with un-
certainty and dynamic awareness to handle dynamic voxels
implicitly.
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Figure D. Visualization of occupancy prediction results from ST-Occ across four representative scenes. The ego vehicle-centered predic-
tions at different timestamps are displayed within solid-line boxes, with the corresponding input RGB images provided above. Each scene
also includes the scene-level occupancy prediction derived from our spatiotemporal memory aggregated over all frames.


