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Training Strategy Spatial Variance Total Variation

w/o E2E Tuning 17.06 6627.35
E2E w/ REPA Loss 18.02 5516.14
E2E w/ Diff. Loss 0.02 89.80

Table 9. Impact of Naive End-to-End Training with Diffusion
Loss. We report total variation [40] and mean variance along each
VAE latent channel for three training settings: 1) Standard LDM
training (w/o end-to-end (E2E) tuning), 2) Naive E2E tuning with
Diffusion loss, 3) E2E tuning with REPA loss [52]. All experi-
ments use SDVAE for VAE initialization. We observe that using
diffusion loss for end-to-end tuning encourages learning a sim-
pler latent space with lower variance along the spatial dimensions
(Fig. 3a). The simpler latent space is easier for denoising objective
(§3.1), but degrages final generation performance (Fig. 1). All re-
sults are reported at 400K iterations with SiT-XL/2 [30] as LDM.

A. Impact of Diffusion Loss on Latent Space
We analyze the effect of naively using diffusion loss for
end-to-end tuning, focusing on how it alters the latent
space structure. All experiments here use SD-VAE for to-
kenizer initialization and SiT-XL/2 [30] as the latent diffu-
sion model, trained for 400K iterations without classifier-
free guidance. We report two metrics to quantify latent
structure, 1) Spatial Variance, computed as the mean per-
channel variance across spatial dimensions, and 2) Total
Variation [40], which captures local spatial differences in
the latent map.

As shown in Tab. 9 and Fig. 3, directly backpropagating
the diffusion loss leads to reduced spatial variance, which
creates an easier denoising problem by hacking the latent
space but leads to reduced image generation performance.
In contrast, end-to-end training with REPA-E not only leads
to improved generation performance but also improves the
latent space structure for the underlying VAE ( Fig. 3, 5).

B. Additional Analysis

Method gFID → sFID → IS ↑ Prec. ↑ Rec. ↑

REPA + E2E-Diffusion 444.1 460.3 1.49 0.00 0.00
REPA + E2E-LSGM 9.89 5.07 107.5 0.72 0.61
REPA-E (Ours) 4.07 4.60 161.8 0.76 0.62

Table 10. Comparison with LSGM Objective. REPA-E shows
better generation performance and convergence speed.

Comparison of End-to-End Training Objectives. We
provide additional results comparing different objectives for
end-to-end training of VAE and LDM. Specifically, we eval-

Method gFID→ sFID→ IS↑ Prec.↑ Rec.↑

REPA + SiT-L 22.2 5.68 58.3 0.74 0.60
REPA-E + SiT-L 12.8 4.60 90.6 0.79 0.61

Table 11. Scaling REPA-E to Higher Resolution. System-level
results on ImageNet-512 with 64↓64 latents using SiT-L at 100K
steps without classifier-free guidance. We observe that REPA-E
leads to signficant performance improvements over vanilla-REPA
[52] even at high resolutions.

Sampler ODE, NFE=50 SDE, NFE=250

VA-VAE E2E-VAE VA-VAE E2E-VAEgFID 5.43 5.02 5.57 4.97

Table 12. Generalization to T2I Tasks. FID results on MSCOCO
text-to-image generation using MMDiT + REPA. We find that end-
to-end tuned VAEs (E2E-VAE) also generalizes to T2I tasks show-
ing improved generation performance.

uate: 1) naive E2E training by backpropagating diffusion
loss to VAE encoder, 2) the LSGM entropy-regularized ob-
jective [46], 3) our proposed REPA-E. All methods are
trained with SiT-XL for 400K steps under consistent set-
tings.

The LSGM objective prevents feature collapse by max-
imizing entropy of the latent space. However, as shown
in Tab. 10, our REPA-E formulation yields better perfor-
mance across all metrics at just 400K steps, with signifi-
cantly faster convergence and stronger generation quality.

Scaling REPA-E to Higher Latent Resolution. We
conduct experiments on ImageNet-512 [6] to evaluate the
performance of REPA-E under higher-resolution latent set-
tings (64 → 64). We use SD-VAE [39] as the tokenizer and
SiT-L as the diffusion model, trained for 100K steps and we
report the performance without classifier-free guidance. As
shown in Tab. 11, our approach yields significant improve-
ments in generation quality compared to REPA.

MSCOCO Text-to-Image Generation with E2E-VAE.
To further evaluate the utility of the tuned VAE beyond Ima-
geNet, we assess its performance in a text-to-image genera-
tion (T2I) setting on MSCOCO [28]. Following REPA [52],
we adopt MMDiT [10] as the diffusion backbone and ap-
ply REPA loss across all variants. All models are trained
for 100K steps and evaluated using classifier-free guidance
with ωcfg = 2.0 and EMA weights during inference. We
report generation FID, and observe that replacing VA-VAE
with our E2E-VAE consistently improves downstream text-
to-image generation quality (Tab. 12).



Figure 6. Qualitative Results on Imagenet 256 ↓ 256 using E2E-VAE and SiT-XL. We use a classifier-free guidance scale ωcfg = 4.0.

Tokenizer Method Training
Epoches #params rFID↑ Generation w/o CFG Generation w/ CFG

gFID↑ sFID↑ IS↓ Prec.↓ Rec.↓ gFID↑ sFID↑ IS↓ Prec.↓ Rec.↓
AutoRegressive (AR)

MaskGiT MaskGIT [4] 555 227M 2.28 6.18 - 182.1 0.80 0.51 - - - - -
VQGAN LlamaGen [44] 300 3.1B 0.59 9.38 8.24 112.9 0.69 0.67 2.18 5.97 263.3 0.81 0.58
VQVAE VAR [45] 350 2.0B - - - - - - 1.80 - 365.4 0.83 0.57
LFQ tokenizers MagViT-v2 [50] 1080 307M 1.50 3.65 - 200.5 - - 1.78 - 319.4 - -
LDM MAR [27] 800 945M 0.53 2.35 - 227.8 0.79 0.62 1.55 - 303.7 0.81 0.62

Latent Diffusion Models (LDM)

SD-VAE [39]

MaskDiT [54] 1600 675M

0.61

5.69 10.34 177.9 0.74 0.60 2.28 5.67 276.6 0.80 0.61
DiT [34] 1400 675M 9.62 6.85 121.5 0.67 0.67 2.27 4.60 278.2 0.83 0.57
SiT [30] 1400 675M 8.61 6.32 131.7 0.68 0.67 2.06 4.50 270.3 0.82 0.59
FasterDiT [49] 400 675M 7.91 5.45 131.3 0.67 0.69 2.03 4.63 264.0 0.81 0.60
MDT [12] 1300 675M 6.23 5.23 143.0 0.71 0.65 1.79 4.57 283.0 0.81 0.61
MDTv2 [13] 1080 675M - - - - - 1.58 4.52 314.7 0.79 0.65

Representation Alignment Methods

VA-VAE [48] LightningDiT [48] 80 675M 0.28 4.29 - - - - - - - - -
800 675M 2.17 4.36 205.6 0.77 0.65 1.35 4.15 295.3 0.79 0.65

SD-VAE REPA [52] 80 675M 0.61 7.90 5.06 122.6 0.70 0.65 - - - - -
800 675M 5.90 5.73 157.8 0.70 0.69 1.42 4.70 305.7 0.80 0.65

80 675M 3.46 4.17 159.8 0.77 0.63 1.67 4.12 266.3 0.80 0.63E2E-VAE (Ours) REPA 800 675M 0.28 1.83 4.22 217.3 0.77 0.66 1.26 4.11 314.9 0.79 0.66

Table 13. System-Level Performance on ImageNet 256 ↓ 256 comparing our end-to-end tuned VAE (E2E-VAE) with other VAEs for
traditional LDM training. We observe that in addition to improving VAE latent space structure (Fig. 5), end-to-end tuning significantly
improves VAE downstream generation performance. Once tuned using REPA-E, the improved VAE can be used as drop-in replacement for
their original counterparts for accelerated generation performance. Overall, our approach helps improve both LDM and VAE performance
— achieving a new state-of-the-art FID of 1.26 and 0.28, respectively for LDM generation and VAE reconstruction performance.



Acknowledgments
We would like to extend our deepest appreciation to Zeyu
Zhang, Qinyu Zhao, and Zhanhao Liang for insightful dis-
cussions. We would also like to thank all reviewers for their
constructive feedback. This work was supported in part by
the Australian Research Council under Discovery Project
DP210102801 and Future Fellowship FT240100820. SX
acknowledges support from the OpenPath AI Foundation,
IITP grant funded by the Korean Government (MSIT)
(No. RS-2024-00457882) and NSF Award IIS-2443404.

References
[1] Stability AI. Improved autoencoders ... https://

huggingface.co/stabilityai/sd- vae- ft-
mse, n.d. Accessed: April 11, 2025. 5, 6

[2] Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bo-
janowski, Pascal Vincent, Michael Rabbat, Yann LeCun, and
Nicolas Ballas. Self-supervised learning from images with a
joint-embedding predictive architecture. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 15619–15629, 2023. 7
[3] Dana H Ballard. Modular learning in neural networks. In

Proceedings of the sixth National conference on Artificial

intelligence-Volume 1, pages 279–284, 1987. 3
[4] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T

Freeman. Maskgit: Masked generative image transformer.
In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 11315–11325, 2022.
13

[5] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze
Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo,
Huchuan Lu, et al. Pixart-alpha: Fast training of diffusion
transformer for photorealistic text-to-image synthesis. arXiv

preprint arXiv:2310.00426, 2023. 3
[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009. 2, 5, 6, 8,
12

[7] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in neural informa-

tion processing systems, 34:8780–8794, 2021. 5
[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-

tions, 2021. 3
[9] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming

transformers for high-resolution image synthesis. In Pro-

ceedings of the IEEE/CVF conference on computer vision

and pattern recognition, pages 12873–12883, 2021. 3
[10] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim

Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik

Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling recti-
fied flow transformers for high-resolution image synthesis.
In Forty-first International Conference on Machine Learn-

ing, 2024. 3, 12
[11] Peng Gao, Le Zhuo, Ziyi Lin, Chris Liu, Junsong Chen,

Ruoyi Du, Enze Xie, Xu Luo, Longtian Qiu, Yuhang Zhang,
et al. Lumina-t2x: Transforming text into any modality, reso-
lution, and duration via flow-based large diffusion transform-
ers. arXiv preprint arXiv:2405.05945, 2024. 3

[12] Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and
Shuicheng Yan. Masked diffusion transformer is a strong
image synthesizer. In Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, pages 23164–23173,
2023. 13

[13] Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and
Shuicheng Yan. Mdtv2: Masked diffusion transformer is a
strong image synthesizer. arXiv preprint arXiv:2303.14389,
2023. 13

[14] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-

national conference on computer vision, pages 1440–1448,
2015. 1

[15] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages
580–587, 2014. 1

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 3
[17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems,
30, 2017. 5

[18] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 5

[19] Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip
Isola. The platonic representation hypothesis. In Interna-

tional Conference on Machine Learning, 2024. 3
[20] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-

ing, pages 448–456. pmlr, 2015. 4, 5
[21] Dongwon Kim, Ju He, Qihang Yu, Chenglin Yang, Xiao-

hui Shen, Suha Kwak, and Liang-Chieh Chen. Democra-
tizing text-to-image masked generative models with com-
pact text-aware one-dimensional tokens. arXiv preprint

arXiv:2501.07730, 2025. 3
[22] Diederik P Kingma. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013. 1, 3
[23] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[24] Theodoros Kouzelis, Ioannis Kakogeorgiou, Spyros Gidaris,
and Nikos Komodakis. Eq-vae: Equivariance regularized la-
tent space for improved generative image modeling. arXiv

preprint arXiv:2502.09509, 2025. 2, 3, 7, 8

https://huggingface.co/stabilityai/sd-vae-ft-mse
https://huggingface.co/stabilityai/sd-vae-ft-mse
https://huggingface.co/stabilityai/sd-vae-ft-mse


[25] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko
Lehtinen, and Timo Aila. Improved precision and recall met-
ric for assessing generative models. Advances in neural in-

formation processing systems, 32, 2019. 5
[26] Black Forest Labs. Flux. https://github.com/

black-forest-labs/flux, 2024. 3
[27] Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and

Kaiming He. Autoregressive image generation without vec-
tor quantization. Advances in Neural Information Processing

Systems, 37:56424–56445, 2025. 13
[28] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 12

[29] I Loshchilov. Decoupled weight decay regularization. arXiv

preprint arXiv:1711.05101, 2017. 5
[30] Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M

Boffi, Eric Vanden-Eijnden, and Saining Xie. Sit: Explor-
ing flow and diffusion-based generative models with scalable
interpolant transformers. In European Conference on Com-

puter Vision, pages 23–40. Springer, 2024. 2, 3, 5, 6, 8, 12,
13

[31] Charlie Nash, Jacob Menick, Sander Dieleman, and Peter
Battaglia. Generating images with sparse representations.
In International Conference on Machine Learning, pages
7958–7968. PMLR, 2021. 5

[32] OpenAI. Sora. https://openai.com/sora, 2024. 3
[33] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
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