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This supplementary material serves as an appendix to
our main paper. In Section 1, we present the details of the
Half Quadratic Splitting (HQS) Algorithm utilized in our
formulation. Section 2 presents the algorithm flow of our
proposed method AFUNet. In Section 3, we provide more
experiment details. In Section 4, we provide the compari-
son of computational costs of AFUNet. Section 5 presents
our additional quantitative comparison of some classical
and state-of-the-art methods using perceptual metrics. Sec-
tion 6 presents the visual analysis of our proposed unfolding
framework, focusing on the feature maps of variables in our
formulation. In Section 7, we further conduct ablation stud-
ies, giving more comprehensive visual results comparison
and analysis on the effectiveness of tailored components,
the number of iterative stages, and different paradigms.
Section 8 showcases more visual reconstruction results of
AFUNet.

1. The Formulation of Half Quadratic Splitting
Half Quadratic Splitting (HQS) [2] technique has been
proven effective in solving maximum a posterior (MAP)
problems, involving the data fidelity term and regulariza-
tion terms, which is:

x̂ = argmin
x

1

2
∥y −Ax∥22 + λ1Ψ1(x) + λ3Ψ3(x), (1)

where λ1 and λ3 are weighting parameters that control the
penalty strength of the regularizers.

The optimization problem Eq. (1) can be solved by in-
troducing an auxiliary variable u and v to match the regu-
larization terms Ψ1(·) and Ψ3(·), respectively.

argmin
x,u,v

1

2
∥y −Ax∥22 + λ1Ψ1(u) + λ3Ψ3(v).

s.t. u = x, v = x

(2)
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The HQS method solves the following problem, refor-
mulated from Eq. (2):

argmin
x,u,v

1

2
∥y −Ax∥22 + λ1Ψ1(u) + λ3Ψ3(v)

+
β1

2
∥u− x∥22 +

β3

2
∥v − x∥22,

(3)

where β1 and β3 are penalty parameters of the Lagrangian
term. Eq. (3) can be solved in an iterative strategy, HQS
optimizes u, v, x in an alternating fashion by solving the
following three subproblems separately:

ut = argmin
u

β1

2
∥u− xt−1∥22 + λ1Ψ1(u), (4a)

vt = argmin
v

β3

2
∥v − xt−1∥22 + λ3Ψ3(v), (4b)

xt = argmin
x

1

2
∥y2 −D2x∥22 +

β1

2
∥ut − x∥22 +

β3

2
∥vt − x∥22.

(4c)

The update processes of ut and vt in Eq. (4a) and
Eq. (4b) are non-trivial and need to adopt deep neural net-
works as regularizers. Note that Eq. (4c) is a least-squares
problem with a quadratic penalty term with a closed-form
solution.

HQS method can decouple the data fidelity terms and
the regularization terms by introducing auxiliary variables,
splitting the complex problem into several subproblems,
and then tackling them in an iterative and alternating man-
ner. Each variable, u, v and x, has its distinct physical
meaning in the optimization problem. The optimization
of these three variables in Eq. (4a), Eq. (4b) and Eq. (4c)
can complement each other, approaching the ultimate op-
timal solution from different starting points. This design
increases the likelihood of finding the global optimum and
avoids the risk of getting trapped in local optima.

1



Algorithm 1 Proposed AFUNet
Input: LDR images y1, y2, y3, the number of reconstruc-
tion stages T .
Output: Final reconstructed HDR image x̂.
Initialization:

1: Initialize the stage number t = 1 and ceiling T .
2: Initialize the reconstructed feature f0

x = fy2
, alignment

variable features f0
α1

= fy1
, f0

α3
= fy3

.
HDR Feature Reconstruction:

1: while t ≤ T do
2: Feature Alignment:
3: Update f t

α1
by α1-SAM ▷ Alignment Problem

4: Update f t
α3

by α3-SAM ▷ Alignment Problem
5: Feature Fusion:
6: Update f t

us
, f t

vs by SFM ▷ Fusion Problem
7: Update f t

u by U-CFM ▷ Fusion Problem
8: Update f t

v by V-CFM ▷ Fusion Problem
9: Update f t

xp
by DCM ▷ Fusion Problem

10: Update f t
x from {f t

u, f t
xp

, f t
v} ▷ Fusion Problem

11: t = t+ 1 ▷ Next Stage
12: end while
HDR Image Reconstruction:

1: x̂ = Sigmoid(Conv(fT
x +Conv(fy2

)))
2: Output reconstructed HDR image x̂.

2. Algorithm
Our AFUNet consists of three processes: Initialization,
HDR Feature Reconstruction, and HDR Image Reconstruc-
tion. HDR Feature Reconstruction can be further divided
into two subprocesses, i.e., Feature Alignment and Feature
Fusion. In the Feature Alignment subprocess, we update
f t
α1

and f t
α3

. In the Feature Fusion subprocess, we update
f t
u, f

t
v and then f t

x. The algorithm of our proposed method
AFUNet is summarized in Algorithm 1.

3. Experiment Details
In this section, we present additional experiment details that
are not included in the main paper due to space limitations.
Dataset Details. All methods are trained using three pub-
licly available datasets, employing identical training set-
tings: Kalantari’s dataset [5] consists of 74 samples for
training and 15 for testing, all captured under authentic en-
vironmental conditions. Each sample comprises three LDR
images with exposure variations of { -2, 0, 2 } or { -3, 0, 3 }.
Tel’s dataset [9] consists of 108 samples for training and 36
for testing, similar to Kalantari’s dataset, all captured under
real-world conditions. Each sample comprises three LDR
images with exposure variations of { -2, 0, 2 }. Different
from Kalantari’s dataset and Tel’s dataset, Hu’s dataset [4]
is a synthetic dataset designed to emulate sensor realism,

generated through a game engine. This dataset contains im-
ages captured at three distinct exposure levels { -2, 0, 2 }.
We use the initial 85 samples for training and the remaining
15 samples for testing following [4].

Training Details. We harness the Adam optimization strat-
egy [6] along with a cosine annealing scheme. The channel
C is set to 72. The number of attention heads for cross-
attention and self-attention in the Spatial Alignment Mod-
ule (SAM) and Spatial Fusion Module (SFM) are both set
to 4 in all iterative stages.

4. Computational Costs
The computational costs of our proposed method are pre-
sented in Tab. 1, which compares the inference time and pa-
rameter quantities across different methods. Among them,
AFUNet demonstrates the fastest inference speed while
maintaining a relatively small number of parameters. This
indicates that AFUNet effectively balances computational
complexity and performance.

Method CA-ViT SCTNet DiffHDR AFUNet

Time (s) 2.445s 3.399s 10.222s 1.940s
Param. (M) 1.22M 0.99M 74.99M 1.16M

Table 1. The inference time and parameters of different methods.
For each item, the best result is blodfaced, and the second best is
underlined.

5. Perceptual Metrics
As illustrated in Tab. 2, we additionally compute var-
ious common perceptual metrics, including Fréchet In-
ception Distance (FID) [3], Learned Perceptual Image
Patch Similarity (LPIPS) [15], Visual Saliency-based Index
(VSI) [14], and Deep Image Structure and Texture Simi-
larity (DISTS) [1]. Tonemaping is applied for computing
these perceptual metrics due to the domain difference be-
tween HDR images and natural images. According to the
results shown in Tab. 2, our method AFUNet still performs
well on perceptual metrics, with the strong capability to re-
construct high-quality HDR images that are visually satis-
factory and aligned with human perception.

6. Visual Analysis of Feature maps
In this section, we give a further analysis of our proposed
cross-iterative Alignment and Fusion deep Unfolding Net-
work by extracting the feature maps of main variables from
each iterative stage in our formulation. Fig. 1 illustrates the
feature reconstruction process within the feature domain,
with annotations highlighting the intermediate variables of
the feature maps we will present in the following. Specif-



Datasets Models GT DHDR[11] AHDR[12] HDR-GAN[8] CA-ViT[7] DiffHDR[13] SCTNet[9] Ours

Kalantari [5]

FID ↓ 0 12.97 12.26 10.71 8.39 7.83 8.53 7.62
LIPIS ↓ 0 0.0094 0.0075 0.0070 0.0054 0.0058 0.0060 0.0053
DISTS ↓ 0 0.0129 0.0107 0.0090 0.0067 0.0065 0.0060 0.0061

VSI ↑ 100 99.77 99.71 99.75 99.80 99.80 99.78 99.81

Hu [4]

FID ↓ 0 11.91 12.08 10.27 4.56 3.98 4.04 3.74
LIPIS ↓ 0 0.0561 0.1049 0.0547 0.0506 0.0435 0.0037 0.0035
DISTS ↓ 0 0.0374 0.0835 0.0362 0.0289 0.0231 0.0029 0.0027

VSI ↑ 100 0.9256 0.8605 0.9600 0.9712 0.9745 0.9985 0.9985

Tel [9]

FID ↓ 0 12.20 9.95 15.48 8.60 9.28 5.68 6.52
LIPIS ↓ 0 0.012 0.085 0.011 0.0074 0.0075 0.0074 0.0073
DISTS ↓ 0 0.0225 0.0155 0.0208 0.0148 0.0156 0.0107 0.0147

VSI ↑ 100 0.9971 0.9978 0.9979 0.9984 0.9985 0.9981 0.9985

Table 2. Quantitative comparison of proposed network with several state-of-the-art methods on Kalantari’s dataset [5], Hu’s dataset [4],
and Tel’s dataset [9].
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Figure 1. We extract intermediate variables’ feature maps from the feature reconstruction process of AFUNet. The variables are highlighted
in the figure, involving the initial three variables—f0

α1
, f0

x , f0
α3

and f t
α1

, f t
x, f t

α3
, f t

u, f t
v in each stage, t = 1, 2, 3, 4.

ically, we display the feature maps of the initial three vari-
ables f0

α1
, f0

x , f0
α3

, as well as the f t
α1

, f t
x, f t

α3
, f t

v , and f t
u at

each stage within the process. As shown in Fig. 2 and Fig. 3,
the top three rows demonstrate the initial and each stage
variables f t

α1
, f t

x and f t
α3

(t = 0, 1, . . . , 4). The bottom
two rows demonstrate f t

u and f t
v (t = 1, 2, 3, 4). Examining

Fig. 2 and Fig. 3, we can observe clear misalignment issues,
which are caused by large motion in dynamic scenes, in the
0th and 1st stages. While going through the iterative stages,
these artifacts are incrementally reduced, and the interme-
diate feature map quality in the reconstruction process is
progressively improved. The two alignment auxiliary vari-
ables f t

α1
and f t

α3
progressively align to the intermediate re-

constructed feature in the top three rows. The bottom three
rows display the two introduced auxiliary variables, f t

u and
f t
v . These variables serve as additional reconstruction tar-

get features, complementing f t
x. Together, they approach

the ultimate optimum, providing essential information for
HDR feature reconstruction.

7. Ablation Study

7.1. The Effectiveness of Components
The visual comparison of AFUNet and its variants M1-
M4 trained on Kalantari’s dataset [5] is shown in Fig. 4.
The effectiveness of each meticulously designed component
within AFUNet is evident. Visual comparisons between
{M2, M3, M4} and M1, highlight a pronounced enhance-
ment in reconstruction clarity and robustness, validating the
necessity of these components within our framework for im-
proved reconstruction and occlusion handling capabilities
in dynamic scenarios.

7.2. Different Iterative Stages
The quantitative results of AFUNet with different iterative
stages we provided in the main text are presented in a more
intuitive graphical manner in Fig. 5. With the increment of
the stage number, an overall upward trend is observed, ac-
companied by slight fluctuations at stages 4, 5, and 6 cases.

To comprehensively investigate the performance of dif-
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Figure 2. Feature maps of variables in our formulation, i.e., f t
α1

, f t
x, f t

α3
, f t

u and f t
v . These feature maps are extracted from each stage of

AFUNet trained on Kalantari’s dataset [5].

ferent stages, we give more visual comparisons of vari-
ous stage numbers. We denote the variations with distinct
numbers of iterative stages as AFUNet-{2,3,4,5,6}, with
AFUNet-4 being the default configuration, while the oth-
ers adhere to the same training specifications as described
in the main text. We summarize the visual comparisons in
Fig. 6. In line with the quantitative outcomes, the quality of
HDR visual effects is enhanced with an increasing number
of stages.

7.3. Different Paradigms
In the main text, we discuss a novel paradigm “FA” and
compare it with the “AF” paradigm, i.e., AFUNet. The vi-
sual comparison of the two paradigms is shown in Fig. 7,
consistent with the quantitative results. Additionally, the vi-

sual comparison of different feature maps on two paradigms
is shown in Fig. 8. At the same stage, the “AF” paradigm
outperforms the “FA” paradigm, yielding superior results
and fewer artifacts. The preliminary alignment facilitates
subsequent fusion operations, demonstrating the necessity
and effectiveness of our carefully tailored alignment mod-
ules. This also highlights the synergy between alignment
and fusion.

8. Additional Qualitative Results

In this section, we present additional qualitative results.
Fig. 9, Fig. 10 and Fig. 11 show visual results for various
motion and poor exposure condition cases which are chal-
lenging in Kalantari’s dataset [5], Tel’s dataset [9], and Hu’s
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Figure 3. Feature maps of variables in our formulation, i.e., f t
α1

, f t
x, f t

α3
, f t

u and f t
v . These feature maps are extracted from each stage of

AFUNet trained on Kalantari’s dataset [5].

dataset [4], respectively. Fig. 12 provides additional quali-
tative results without ground truth in Tursen’s dataset [10].
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Alignment-Fusion

Fusion-Alignment

��
� ��

� ��
� ��

� ��
�

��
� ��

� ��
� ��

� ��
�

Figure 8. Visual comparison of feature maps extracted from AFUNet trained on Kalantari’s dataset [5].
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Figure 9. Qualitative results for challenging cases in Kalantari’s dataset [5].



Figure 10. Qualitative results for challenging cases in Tel’s dataset [9].

Figure 11. Qualitative results for challenging cases in Hu’s dataset [4].



Figure 12. Qualitative results for challenging cases in Tursen’s dataset without ground truth [10].
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