
AGO: Adaptive Grounding for Open World 3D Occupancy Prediction

Supplementary Material

In this supplementary material, we first describe the im-
plementation details of our method in Sec. A. Following
that, additional experimental results and ablation study are
presented in Sec. B. Finally, Sec. C provides more visual-
ization comparisons and qualitative analysis.

A. Additional Implementation Details
A.1. Label space design
Choosing appropriate label prompts is crucial for effectively
establishing semantic associations between categories in the
language priors. However, some of the category names in
the Occ3D-nuScenes dataset [43] are too vague or broad to
be directly encoded into semantically rich text embeddings.
For example, in the definition of Occ3D-nuScenes [43],
“others” and “other flat” represent structures and horizon-
tal ground-level planes that cannot be classified into any
other category, respectively. They are just general terms for
many categories that have not been specifically annotated
and thus do not have a clear semantic meaning. Therefore,
we follow existing works [3, 45, 57] and divide them into
the subcategories as shown in Table A. The above design is
employed in all supervised and self-supervised experiments
mentioned in this paper. For pretraining as well as zero-shot
and few-shot transfer in the open-world setting, we adopt
the original labels as corresponding prompts after removing
the semantically ambiguous “others” and “other flat”. The
reason for this is to avoid the influence of different label
space designs on open-world performance.

A.2. Pseudo-label generation
Thanks to the integrated SAM [22], Grounded SAM [38]
can generate semantic masks with more detail and more ac-
curate boundaries than MaskCLIP+ [59]. Therefore, we uti-
lize pre-trained Grounded SAM to generate pseudo-labels.
We feed each surrounding image and the label prompts
defined in Appendix A.1 into this model to generate 2D
pseudo semantic masks corresponding to the image. In this
process, the box threshold is set to 0.2 and the text thresh-
old is set to 0.15. These 2D masks are projected into the 3D
voxels based on the calibration matrices of the LiDAR and
surrounding cameras.

Considering the sparsity of the LiDAR point cloud, we
aggregate multiple frames to densify it. Specifically, we
first select a certain number Nsweep of camera sweeps and
pseudo-synchronize each of them with the temporally clos-
est LiDAR sweep. It is worth noting that the above selection
is not continuous, but has a sampling interval of Ninterval.
This is to allow the pseudo labels to cover as much space as
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Figure A. Pseudo-label evaluation on the Occ3D-nuScenes [43]
dataset. “MA” denotes multi-frame aggregation and “RC” refers
to ray casting. “GSAM” is an acronym for Grounded SAM.

possible while using the same number of sweeps. There-
after, the generated voxelized 3D pseudo-labels of each
sweep are warped to the reference sweep and superimposed
to obtain dense pseudo-labels. In our implementation, we
set Nsweep = 30 and Ninterval = 2 corresponding to a 15 s
time range and take the key frame as the reference sweep.
Despite this, there are still many false negatives in the above
pseudo-labels, i.e., many occupied voxels are marked as
free, which is caused by occlusion. Therefore, we employ
ray casting for free voxel assignment, that is, only unoccu-
pied voxels between the LiDAR and the reflection point on
each ray are set as free, while the remaining occluded vox-
els are ignored. In addition, several LiDAR points may be
located in the same voxel. For this reason, we apply a se-
mantic voting mechanism for each voxel, which selects the
category with the most corresponding points as the category
of the voxel.

Table B compares the evaluation results of the pseudo-
labels with different model bases and post-processing. As
can be seen, the mIoU of the pseudo-labels generated based
on Grounded SAM is 3.24 higher than that of MaskCLIP+.
Multi-frame aggregation brings an improvement of 9.89
mIoU, while ray casting further increases the mIoU by 2.08.
It is worth noting that we did not conduct extensive prompt
engineering to enhance the quality of pseudo-labels. How-
ever, our method even outperforms the pseudo labels in
many categories, such as “driveable surface”, “sidewalk”
and “terrain”. This further demonstrates the effectiveness
of our proposed AGO.



Classes Subclasses

others
animal, skateboard, segway, scooter, stroller, wheelchair, trash bag, dolley, wheel barrow,
trash bin, shopping cart, bicycle rack, ambulance, police vehicle, cyclist

barrier barrier
bicycle bicycle
bus bendy bus, rigid bus
car car, van, suv
construction vehicle construction vehicle
motorcycle motorcycle
pedestrian adult pedestrian, child pedestrian, worker, police officer
traffic cone traffic cone
trailer trailer
truck truck
driveable surface road
other flat traffic island, traffic delimiter, rail track, lake, river
sidewalk sidewalk
terrain lawn
manmade building, sign, pole, traffic light
vegetation tree, bush

Table A. Subclass description in label space design. These subclasses apply to self-supervised and open-world training.
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CLIP wo MA&RC MaskCLIP+ 0.05 9.23 11.41 13.99 20.79 15.05 13.15 9.90 11.43 7.97 18.11 15.36 6.08 11.88 11.74 18.32 22.90 12.79
GSAM wo MA&RC Grounded SAM 0.04 10.58 16.86 19.26 24.37 15.19 15.38 22.91 23.98 8.96 12.37 17.90 9.48 12.14 12.34 26.48 24.24 16.03
GSAM wo RC Grounded SAM 0.03 10.44 15.09 22.38 31.94 16.97 20.81 25.79 23.55 7.44 17.09 65.49 4.84 26.76 30.39 56.69 64.95 25.92
GSAM Grounded SAM 1.12 10.50 15.33 24.02 34.77 17.34 22.50 27.34 23.82 6.78 18.51 70.77 4.14 30.31 37.03 61.50 70.21 28.00

Self-supervised AGO - 1.53 6.75 6.43 14.00 22.82 5.57 16.66 13.20 6.80 10.53 15.89 71.48 4.48 34.48 41.37 29.33 25.66 19.23

Table B. Pseudo-label evaluation on the Occ3D-nuScenes [43] dataset. “MA” denotes multi-frame aggregation and “RC” refers to ray
casting. “GSAM” is an acronym for Grounded SAM.

A.3. Framework details

As described in Section 3.1, AGO features a dual-stream
architecture with a text encoder and a vision-centric 3D en-
coder. Since the traditional TPVFormer [18] is designed
for the LiDAR point cloud segmentation task, it involves
both point-level and voxel-level supervision. But for 3D se-
mantic occupancy prediction, point-level supervision is not
necessary. Therefore, we remove this part from our imple-
mentation.

Since we split the original categories into subcategories
according to Appendix A.1, during supervised grounded
training, one class in the ground truth may correspond to
the text embeddings and similarity scores of multiple sub-
classes. To solve this problem, for each voxel, we take the
maximum score across all subclasses belonging to the same
class as its similarity score. In other words, as long as one
subcategory exhibits an extremely high similarity, the orig-

inal category containing that subcategory should be consid-
ered the occupancy prediction for the corresponding voxel.

In AGO, we use a dictionary obtained from Natural Lan-
guage Toolkit (NLTK) library of Python as the source of
noise prompts. For each step, we randomly select Nnoise
prompts from it and encode them into corresponding noise
embeddings using the same text encoder. In our implemen-
tation, we set Nnoise = 100.

In addition, the main purpose of the open world identi-
fier is to flexibly select suitable features based on the predic-
tion distribution of the original 3D embeddings and adaptive
3D embeddings. Considering that in the closed-world set-
ting, all categories are known during grounding training, the
original 3D embedding has stronger discriminative ability.
Therefore, during closed-world prediction, the open world
identifier directly selects the original 3D embedding for the
final prediction.



Method Image Backbone Training Epochs Image Resolution Self-supervised IoU Self-supervised mIoU

AGO ResNet-101 24 900×1600 55.45 19.32
AGO ResNet-50 24 900×1600 50.76 15.23
AGO ResNet-50 12 900×1600 50.06 14.84
AGO ResNet-50 12 450×800 50.24 14.78

Table C. Ablation study of image backbones, traninig epochs and resolutions.

LAlignment
Open World

Pretraining mIoU Zero-shot mIoU Few-shot mIoU

Cosine 22.1 / 3.6 / 12.9 32.2 / 3.2 / 9.0 38.2 / 8.5 / 14.4

MSE (L2) 21.1 / 0.3 / 11.1 31.7 / 0.4 / 6.7 36.9 / 7.1 / 12.4
MAE (L1) 20.8 / 0.1 / 10.5 30.1 / 0.3 / 6.4 37.1 / 6.2 / 12.0

Table D. Ablation study of open-world inference strategy.

Number of
MLP Layers

Open World
Pretraining mIoU Zero-shot mIoU Few-shot mIoU

1 18.4 / 2.6 / 10.5 29.2 / 1.7 / 6.8 38.0 / 6.5 / 13.2
2 22.1 / 3.6 / 12.9 32.2 / 3.2 / 9.0 38.2 / 8.5 / 14.4
3 14.3 / 3.7 / 10.4 22.0 / 3.4 / 8.3 37.3 / 8.2 / 13.9
4 13.6 / 3.8 / 10.3 19.5 / 3.4 / 8.1 37.1 / 7.9 / 13.7

Table E. Ablation study of MLP layer number.

A.4. Closed-world task details
For the vast majority of closed-world methods, we directly
adopt the performance values reported in their papers. How-
ever, POP-3D [45], as a pioneering alignment-based zero-
shot method, has not yet been compared on the Occ3D [43]
benchmark. Its evaluation is based on the original nuScenes
dataset [5] and considers only the voxels traversed by Li-
DAR rays in a single frame, with a resolution of 100×100×8
(see Sec. 4.1 in POP-3D [45]). For fairness, we retrain it us-
ing the 200×200×16 resolution consistent with Occ3D [43]
setting. The drop in reported mIoU largely stems from
the stricter evaluation protocol (see Sec. 3.3 & 6.1 in
Occ3D [43]).

A.5. Open-world task details
In the open-world task, the entire progress is divided into
three stages: pre-training, zero-shot evaluation and few-shot
finetuning. In the pretraining stage, only the pseudo-labels
of 5 major categories are known, namely Cpre. = { “pedes-
trian”, “driveable surface”, “sidewalk”, “vehicle”, “cycle”
}. Among them, “vehicle” and “cycle” are two supercat-
egories, which are formed by the original category sets {
“car”, “bus”, “construction vehicle”, “trailer”, “truck” } and
{ “bicycle”, “motorcycle” }, respectively, to simulate the
common coarse-to-fine labeling process in real-world ap-
plications. The remaining Occ3D classes as well as cor-
responding voxels are ignored during pre-training but in-
cluded in the subsequent zero-shot evaluation. During the
few-shot fine-tuning stage, only a small number of samples
are provided. They have the complete original Occ3D la-
bel space and each category appears at least in k samples
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Figure B. Average maximum confidence for each class.

(k-shot setting). We set k = 100 and repeat every few-shot
experiment 5 times to calculate the average, thus reducing
randomness. This is to validate model’s few-shot general-
ization ability of unknown classes. Noting that the original
classes “others” and “other flat” are semantically ambigu-
ous, they are not included in all stages.

Due to different categories in open-world pretraining
stage, all methods need to be retrained (based on their orig-
inal code). The specific retraining settings are as follows:
• POP-3D [45]: It is trained solely with the original align-

ment loss, without pseudo-labels. The only difference
across stages lies in the different class text prompts used
for inference and evaluation.

• SelfOcc [19]: We define its output label space as the full
class set (Ck ∪Cuk). In the open-world pretraining stage,
only outputs of Ck are supervised by pseudo-labels, while
all categories are considered during zero-shot evaluation,
resulting in 0 unknown mIoU. In the open-world fine-
tuning stage, all class outputs are supervised.

• GaussTR [20]: The alignment loss is the same at all open-
world stages. In the open-world pretraining stage, only
pseudo-labels of Ck are used for the extra loss to refine
the semantic boundaries, while in the open-world fine-
tuning stage, pseudo-labels of all classes are used.

B. Additional Experiments and Analyses
B.1. Additional ablation study
Considering the closed-world self-supervised methods that
we compared to used different image backbones, traninig
epochs and resolutions, we show the corresponding ablation



study results in Tab. C. As can be seen, the image backbone
has the greatest impact on performance. However, even us-
ing only ResNet-50, our AGO still outperforms all exist-
ing methods with 15.23 mIoU on the self-supervised bench-
mark. In contrast, the training epochs and the resolution of
the input images have relatively small influence. But even
under the most challenging setting, our method is still at the
same level as the current state-of-the-art model (with only
a 0.36 mIoU gap). This further indicates that the effective-
ness of our method does not come from large numbers of
parameters, long training durations, or high-resolution in-
put images, but from the framework design itself.

Table D illustrates the impact of different alignment loss
functions on the open-world performance of the model. It
can be observed that replacing the cosine similarity loss
with either mean squared error (MSE) or mean absolute er-
ror (MAE) loss leads to a degradation in prediction perfor-
mance across all stages, regardless of whether the objects
are from known or unknown categories. Notably, in both
the pretraining and zero-shot phases, the model almost en-
tirely loses its ability to recognize unknown instances. This
finding underscores that, in contrast to cosine similarity
loss, MSE and MAE losses are not suitable for cross-modal
alignment tasks, thereby impairing the perception capability
of open-world scenes.

As shown in the Table E, we further compare the im-
pact of the number of MLP layers in the modality adapter
on the open-world prediction capability. Notably, when the
adapter consists of only a single layer MLP, it does not in-
clude any non-linear activation functions. In this case, the
semantic space before and after adaptation remains highly
similar, leading to performance comparable to Gro.+Align
in Table 3. As the number of non-linear projection layers
increases, a clear trend is observed: while the mIoU for un-
known categories has a slight improvement, the mIoU for
known categories degrades significantly. Considering the
overall predictive performance, we use a two-layer MLP as
the modality adapter.

B.2. Confidence analysis of 3D embeddings

In addition to the information entropy of the predicted prob-
ability distribution, we also analyze the maximum confi-
dence score of each category during the pretraining phase,
i.e. the maximum value of the probability distribution.. As
shown in the Figure B, the adaptive 3D embedding exhibits
generally higher maximum confidence for unknown cate-
gories, while demonstrating more confident predictions for
known categories. This observation aligns with our pre-
vious entropy-based analysis in Section 4.3, where predic-
tions with lower entropy tend to correspond to higher con-
fidence scores. Therefore, maximum confidence can also
serve as a criterion in the open world identifier.

Method Param. Seen/Unseen mIoU
0/17 9/8 13/4

VEON [57] 678.1M 15.14 15.16 19.94
AGO 62.5M 19.23 22.42 25.90

Table F. VEON’s open-world benchmark.

streetlight

Figure C. Visualization of open-vocabular retrieval.

B.3. Comparison under VEON’s open-world setting
VEON [57] defines another open-world benchmark with
partial semantic labels. Specifically, it divides the complete
label set into X seen categories with GT annotations and Y
unseen categories without annotations for training, and then
performs inference and evaluation on the complete label set.
In Table F, we also compare AGO with it under the same
settings. It can be observed that, regardless of the X/Y set-
ting, our method consistently outperforms VEON [57] by a
significant margin, while utilizing less than 10% of its pa-
rameters.

B.4. Comparison on Occ3D-Waymo dataset
In Table G, we provide the closed-world comparison based
on the Occ3D-Waymo [43] dataset. In addition, Table H
presents the prediction performance comparison under the
open-world setting, with the “GO” category excluded due
to its semantic ambiguity.

B.5. Detailed open-world results
In Table I, we provide the detailed prediction results of the
open-world ablation experiments in Table 3 and 4.

C. Additional Visualization
Figure C shows the visualization of AGO’s open vocabu-
lary retrieval results, where H(Pv) and H(P̃v) represent the
average entropy of the corresponding voxel predictions be-
fore and after the modality adapter. We also show more
visual comparisons of self-supervised 3D semantic occu-
pancy prediction in Figure D. It can be seen that compared
to SelfOcc [19], our AGO provides more complete and fine-
grained predictions. Especially for dynamic categories with
small scales, such as cars and pedestrians, the results of
our method are closer to the ground truth. However, due
to the natural flaws of volume rendering-based methods in
dynamic objects, SelfOcc [19] has massive false positives
and false negatives in the predictions of these categories.
In addition, limited by the computational complexity, 3D



Method Image Backbone
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POP-3D† [45] ResNet-101 0.31 20.31 5.46 0.83 0.00 7.11 10.02 7.29 9.36 0.65 12.62 8.90 1.60 65.51 18.89 11.26
SelfOcc† [19] ResNet-50 1.06 22.90 6.38 0.52 0.00 9.03 14.88 6.68 11.25 0.23 15.10 8.81 2.96 69.77 22.32 12.79
GaussTR† [20] VFMs 2.10 23.13 7.15 0.15 0.00 10.71 15.59 8.21 12.86 0.89 19.52 12.25 3.69 70.95 22.41 13.97

AGO (ours) ResNet-101 2.49 26.97 6.94 1.01 0.00 25.02 17.95 11.47 14.15 1.87 22.06 14.56 3.77 71.72 20.26 16.02

Table G. 3D occupancy prediction performance under the self-supervised setting on the Occ3D-Waymo [43] dataset. “cons. cone”
stands for construction cone. † indicate values obtained from our retraining. Results are highlighted in bold & underlined for the best
performance and bold for the second-best performance.
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Pretraining

POP-3D† [45] 0.00 49.84 6.89 10.43 0.00 13.43 - - 0.00 0.00 0.00 0.00 0.00 1.26 0.57 0.44 0.28 5.34
SelfOcc† [19] 0.27 67.45 16.07 28.05 0.00 22.37 - - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.60
GaussTR† [20] 0.22 69.97 22.85 12.05 0.00 21.02 - - 0.00 0.04 0.00 0.00 0.00 4.20 0.99 0.29 0.69 8.51
AGO (ours) 0.09 67.59 19.50 28.29 6.92 24.48 - - 0.03 0.00 0.01 0.00 0.05 5.16 1.92 0.61 0.97 10.01

Zero-shot
Evaluation

POP-3D† [45] 0.00 49.84 6.89 10.43 - 16.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.26 0.57 0.44 0.23 4.96
SelfOcc† [19] 0.27 67.45 16.07 28.05 - 27.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.99
GaussTR† [20] 0.22 69.97 22.85 12.05 - 26.27 0.00 0.00 0.00 0.04 0.00 0.00 0.00 4.20 0.99 0.29 0.55 7.90
AGO (ours) 0.09 67.59 19.50 28.29 - 28.87 5.56 0.14 0.03 0.00 0.01 0.00 0.05 5.16 1.92 0.61 1.35 9.21

Few-shot
Finetuning

POP-3D† [45] 0.00 37.96 6.26 9.12 - 13.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.33 0.49 0.66 0.25 3.99
SelfOcc† [19] 0.55 68.21 18.20 29.60 - 29.14 1.09 0.00 0.08 0.00 0.91 0.00 0.00 3.11 1.02 0.03 0.62 8.77
GaussTR† [20] 0.61 69.71 23.10 12.05 - 26.37 5.15 0.02 2.12 0.00 2.06 1.03 1.27 6.84 3.15 1.12 2.28 9.16
AGO (ours) 0.82 70.15 23.50 30.03 - 31.13 9.26 0.56 2.13 0.00 10.86 5.28 4.15 11.23 8.81 2.57 5.49 12.81

Table H. 3D occupancy prediction performance under the open-world setting on the Occ3D-Waymo [43] dataset. † indicate values
obtained from our retraining. The background color represents whether the category is known or unknown during the pre-training stage:
green and blue indicate known IoU, orange and red indicate unknown IoU. The orange categories are the refined version of the

blue categories. Results are highlighted in bold for the best performance.

features can only be sampled along the rays at a relatively
low sampling rate in volume rendering, which results in a
large number of periodic blank strip textures in the final pre-
diction. This phenomenon is highly evident in the “drive-
able surface” predictions shown in the third and fifth rows
of the figure. Even with constraints such as Hessian loss
LH , regularization LS , and Eikonal term LE [19], this issue
cannot be fundamentally solved. These qualitative compar-
isons further indicate that existing self-supervised models
are insufficient for 3D scene understanding. In contrast, our
proposed AGO framework based on grounded training has
greater potential in this regard.
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Pretraining

Align 0.00 58.10 12.29 6.72 0.00 15.42 - - - - - - - 0.00 0.00 3.81 0.00 0.16 0.79 8.11
Gro. 1.84 68.68 28.52 3.15 0.99 20.64 - - - - - - - 0.00 0.00 0.00 0.00 0.00 0.00 10.32
Gro. + Align 4.31 57.73 25.96 2.36 0.90 18.25 - - - - - - - 0.00 0.00 2.42 0.02 8.49 2.19 10.22
AGO w/o OWI 7.25 65.27 25.93 7.82 4.92 22.24 - - - - - - - 0.00 0.00 0.78 0.00 4.63 1.08 11.66
AGO w/ Max Confi. 7.36 64.76 25.68 8.92 5.32 22.41 - - - - - - - 0.00 0.00 6.90 0.01 8.73 3.13 12.77

Zero-shot
Evaluation

Align 0.00 58.10 12.29 - - 23.46 6.81 0.00 0.00 0.57 2.91 0.00 0.00 0.00 0.00 3.81 0.00 0.16 1.19 5.64
Gro. 1.84 68.68 28.52 - - 33.01 2.21 0.00 0.00 0.02 0.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 6.81
Gro. + Align 4.31 57.73 25.96 - - 29.33 2.78 0.00 0.00 0.15 1.29 1.36 0.00 0.00 0.00 2.42 0.02 8.49 1.38 6.97
AGO w/o OWI 7.25 65.27 25.93 - - 32.82 5.26 0.00 0.00 0.82 4.36 3.08 0.00 0.00 0.00 0.78 0.00 4.63 1.58 7.83
AGO w/ Max Confi. 7.36 64.76 25.68 - - 32.60 7.63 0.00 0.00 0.71 6.08 3.13 0.00 0.00 0.00 6.90 0.01 8.73 2.77 8.73

Few-shot
Finetuning

Align 0.00 58.95 14.18 - - 24.38 5.64 0.00 0.00 0.50 3.97 0.00 0.00 0.00 0.00 11.70 11.34 15.28 4.04 8.10
Gro. 13.34 70.95 30.90 - - 38.40 15.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 8.14 12.25 3.03 10.10
Gro. + Align 12.01 71.57 28.44 - - 37.34 13.52 4.11 0.00 0.00 1.36 1.24 0.00 0.00 0.00 26.83 8.86 12.68 5.72 12.04
AGO w/o OWI 12.58 72.02 30.12 - - 38.24 18.69 5.20 0.00 0.21 2.56 3.59 2.18 0.13 0.00 29.39 21.54 17.80 8.44 14.40
AGO w/ Max Confi. 12.97 71.53 29.63 - - 38.04 18.58 5.03 0.00 0.23 2.74 3.56 2.04 0.30 0.00 29.33 21.32 17.81 8.41 14.34

Table I. Detailed 3D occupancy prediction results under the open-world setting on the Occ3D-nuScenes [43] dataset. The background
color represents whether the category is known or unknown during the pre-training stage: green and blue indicate known IoU, orange

and red indicate unknown IoU. The orange categories are the refined version of the blue categories.

Figure D. Additional visualization of self-supervised 3D semantic occupancy prediction on the Occ3D-nuScenes occupancy bench-
mark.
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