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Our appendix provides supplementary information to the
main paper, offering in-depth insights into our experimental
procedures, extended discussions, and detailed setup config-
urations.

A. Theoretical Analysis on Outlier-Driven Rank
Assignment

Lemma A.1 (Outlier-Rank Correlation). For a layer l, the
required rank r∗l to achieve approximation error ϵ satisfies:

r∗l ≥ C · Ol · log
(
1

ϵ

)
, (1)

where C > 0 is a constant dependent on activation statistics.
This indicates that outlier-rich layers require higher ranks
for equivalent performance.

Proof. Using the SVD of the layer weight matrix Wl, the
approximation error ϵ is bounded by the tail singular values.
Outlier activations amplify the spectral decay of Wl, requir-
ing more singular values (higher rl) to achieve the same ϵ.
The logarithmic relationship follows from the Eckart-Young
theorem.

Theorem A.2 (Optimality of OD-Rank). The solution r∗ to
the OD-Rank optimization problem maximizes the cumula-
tive expressiveness:

L∑
l=1

Ol · log(1 + r∗l ) ≥
L∑

l=1

Ol · log(1 + runiform
l ), (2)

where runiform
l = Pbudget/

∑L
l=1(ml+nl) is the uniform rank

allocation.

Proof. By the KKT conditions, the optimal r∗ allocates
higher ranks to layers with larger Ol, maximizing the
weighted objective. Uniform allocation runiform

l neglects Ol,
yielding suboptimal expressiveness.

*Corresponding author.

OD-Rank thus ensures that parameter budgets are concen-
trated where they maximally impact performance, achieving
superior results compared to uniform allocation.

B. Theoretical Analysis on Activation-Informed
Training

Proposition B.1 (Gradient Scaling Effect). The gradient of
the loss L with respect to the adapter A satisfies:

∇AL ∝ sin ⊙∇yL, (3)

indicating that gradients are amplified for dimensions with
significant activations.

Proof. By the chain rule:

∇AL =
∂y

∂A
· ∇yL (4)

= (x⊙ sin)
⊤ · ∇yL · α (5)

∝ sin ⊙∇yL. (6)

This scaling ensures adaptation focuses on high-impact input
dimensions.

Lemma B.2 (Convergence Acceleration). The normalized
update rule reduces gradient variance by a factor of ∥sin∥22,
accelerating convergence compared to unnormalized LoRA.

Proof. The variance reduction follows from the scaling prop-
erty of the normalization vector sin, which downweights low-
magnitude activations that contribute less to the loss.

This mechanism ensures adaptation prioritizes critical
features, improving both efficiency and final performance.

C. Rank Allocation Methods Comparison
In Table 5 of the main paper, we compare various rank
allocation strategies. Here, we provide detailed definitions
of each method and present a comprehensive visualization
of their resulting rank distributions across layers.
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• Uniform: The conventional approach that assigns equal
ranks to all layers, disregarding their functional hetero-
geneity. Specifically, we set rl = r for all layers l, where
r is determined by the total parameter budget.

• Random: This method randomly assigns ranks to differ-
ent layers while respecting the minimum and maximum
rank constraints. The ranks are sampled from a uniform
distribution and then scaled to meet the parameter budget
constraint.

• Decay: This approach allocates ranks in a linearly decreas-
ing manner from earlier to later layers, following the intu-
ition that earlier layers in model often capture more general
features. Specifically, rl = rmax − (l − 1) · rmax−rmin

L−1 ,
where L is the total number of layers.

• Growth: This strategy allocates ranks in a linearly in-
creasing manner from earlier to later layers, following the
alternative hypothesis that later layers may require more
adaptation capacity for task-specific features. Specifically,
rl = rmin + (l − 1) · rmax−rmin

L−1 .
• O-Driven (Ours): Our proposed Outlier-Driven Rank As-

signment method that allocates ranks based on the layer-
specific Outlier Ratio metric. This approach solves a con-
strained optimization problem to maximize the adaptation
capacity for layers with significant activation outliers, as
described in Section 3.2 of the main paper.
Figure 1 visualizes the rank distributions resulting from

these different allocation strategies across layers. The vi-
sualization clearly demonstrates how our O-Driven method
assigns ranks in a non-uniform pattern that correlates with
the distribution of activation outliers, allocating higher ranks
to layers with more significant outlier ratios. This targeted
allocation leads to more efficient parameter utilization com-
pared to the other strategies, as evidenced by the performance
improvements reported in Table 5 of the main paper.

D. Impact of Calibration Data on Performance
As mentioned in the limitations section of the main pa-
per, our method relies on input data for initialization and
rank assignment. This is a common practice for efficient
compression and optimization techniques that typically re-
quire calibration data, with research spanning model prun-
ing [3, 13, 16], quantization [2, 5], specialized compres-
sion for Mixture-of-Experts models via SVD [17] and Delta
Decompression [6], and knowledge distillation approaches
[8, 9, 22]. A significant trend involves automating the dis-
covery of efficient architectures and compression schemes
through training-free, zero-cost proxies that eliminate the
need for calibration data, including parametric proxies for
NAS [4], automated proxy discovery for generative [14]
and distillation-aware search [19], ViT architecture opti-
mization [21], attention pattern discovery [15], automated
student architecture search [1], Monte Carlo Tree Search
for KD automation [10], universal knowledge distillers [12],
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Figure 1. Comparison of rank distributions across layers for differ-
ent allocation strategies: Uniform, Random, Decay, Growth, and
our Outlier-Driven (O-Driven) method. The visualization shows
how our O-Driven method assigns ranks based on activation outlier
patterns, resulting in a non-uniform distribution that prioritizes
layers with significant outlier ratios.

and task-specific KD strategy optimization [11]. To better
understand this dependency and provide insights for future
improvements, we conduct additional experiments exploring
how different types and quantities of calibration data affect
performance.

D.0.1. Effect of Calibration Dataset Type
Table 1 presents the results of using different calibration
datasets for computing activation statistics while testing
on various target datasets. Interestingly, we observe that
the choice of calibration dataset has a relatively minor im-
pact on the final performance across different test datasets.
For instance, when using DTD as the calibration dataset,
we achieve 64.83% accuracy on DTD test data, which is
very close to the 64.60% achieved when using Food101 for
calibration. This suggests that our method can effectively
capture general activation patterns that transfer well across
different visual domains.

D.0.2. Effect of Calibration Dataset Size
We also investigate how the size of the calibration dataset
affects performance. Table 2 shows the results of using
different batch sizes for collecting activation statistics. Sur-
prisingly, even with a relatively small calibration batch size
of 64, our method achieves comparable or even slightly



Table 1. Effect of different calibration datasets with the ViT-B/16
as visual backbone. Top-1 accuracy (%) averaged over 3 random
seeds is reported.

Calibration dataset Test dataset Test Accuracy

dtd ucf101 78.64
dtd stanford_cars 73.27
dtd dtd 64.83
dtd oxford_pets 93.73
dtd food101 86.42

food101 food101 86.42
food101 dtd 64.60
food101 stanford_cars 73.52
food101 oxford_pets 93.76
food101 ucf101 78.98

oxford_pets stanford_cars 73.50
oxford_pets dtd 64.83
oxford_pets food101 86.43
oxford_pets oxford_pets 93.87
oxford_pets ucf101 79.04

better performance than with larger batch sizes across all
test datasets. This suggests that AIRA can effectively cap-
ture the essential activation patterns with a modest amount
of calibration data, which is particularly advantageous for
resource-constrained scenarios.

Table 2. Effect of different calibration dataset sizes with the ViT-
B/16 as visual backbone. Top-1 accuracy (%) averaged over 3
random seeds is reported.

cal_batch_size oxford_pets food101 stanford_cars dtd ucf101

256 93.87 86.42 73.37 64.66 78.77
128 93.98 86.42 73.49 64.72 78.88
64 94.03 86.42 73.54 64.72 78.91

These findings have important implications for future
research directions. First, they suggest that AIRA’s perfor-
mance is robust to the choice of calibration data, making
it more practical for real-world applications where domain-
specific calibration data might not be readily available. Sec-
ond, the effectiveness of smaller calibration batch sizes indi-
cates potential for further efficiency improvements. Future
work could explore adaptive calibration strategies that dy-
namically adjust the amount and type of calibration data
based on the target task, or investigate meta-learning ap-
proaches to predict optimal rank allocations without explicit
calibration. Additionally, developing techniques to update
activation statistics during fine-tuning could further enhance
adaptation to domain shifts and task-specific requirements.

E. Experimental Setup and Hyperparameters
E.1. Model Configurations
• CLIP ViT-B/16 vision encoder: 86.19 Million parameters,

12 layers, 768 hidden size
• CLIP ViT-B/16 text encoder: 63.43 Million parameters,

12 layers, 512 hidden size

• Mistral-7B: 7 billion parameters, 32 layers, 4096 hidden
size

E.2. Hardware and Software
• GPUs: 8 x NVIDIA V100S (32GB)
• Framework: PyTorch 2.2.1
• CUDA Version: 11.3

E.3. Hyperparameters
Instruction Tuning: We perform the instruction tuning
experiments on Mistral-7B-v0.1 [7], Gemma-7B [20] and
LlaMA-3 8B models. We use a batch size of 128 and train for
2 epochs on 100k samples of the MetaMathQA dataset. Mod-
els are evaluated on the GSM8K and MATH datasets. The
learning rate is set to 7E-3 with the AdamW optimizer [18].
The warmup ratio is 0.02, and a cosine learning rate sched-
uler is used. The parameter α for AIRA modules is always
equal to the rank. In our experiments, AIRA uses 166M
parameters for Mistral-7B. We use 8 × V100S 32GB GPUs
for the finetuning.

Fine-tuning of Vision-Language Models: Table 3 de-
tails our hyperparameter settings for CLIP ViT-B/16, which
remain consistent across all 5 datasets.

Common hyperparameters across experiments:
• Batch size: 32
• Learning rate: 1e-4 (AdamW optimizer)
• Weight decay: 0.01
• Warmup steps: 500
• Max steps: 20,000

Table 3. Our hyperparameter configuration on fine-tuning of Vision-
Language model experiments.

Hyperparameters AIRA

Batch size 64
Learning rate 5e-4

Scheduler CosineAnnealingLR
Optimizer AdamW

Weight decay 0.05
Dropout rate 0.25
Placement query, key, value
Encoder TextEncoder&VisionEncoder

Lora alpha 1
n_iters 300

Max rank 32
Min rank 2

Rank budget 0.7M
Outlier Ratio threshold (τ ) 5

Objective function − log(x)

Task-specific adjustments:
• GSM8K and Math: Increased max steps to 30,000



• Few-shot CLIP: Reduced batch size to 16, max steps to
5,000

E.4. Evaluation Metrics
• NLP tasks: Accuracy, F1 score
• Math reasoning: Pass@1 score
• Few-shot image classification: Top-1 accuracy
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