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1. Implementation Details
1.1. Dataset
We evaluate the performance of our method on 15 recogni-
tion datasets. For generalization from base-to-novel classes
and cross-dataset evaluation, we evaluate the performance
of our method on 11 diverse recognition datasets. Specifi-
cally, these datasets include ImageNet-1K [3] and Caltech-
101 [4] for generic object classification; OxfordPets [14],
StanfordCars [9], Flowers-102 [13], Food-101 [1], and
FGVCAircraft [12] for fine-grained classification, SUN-
397 [19] for scene recognition, UCF-101 [17] for action
recognition, DTD [2] for texture classification, and Eu-
roSAT [5] for satellite imagery recognition. For domain
generalization experiments, we use ImageNet-1K [3] as the
source dataset and its four variants as target datasets includ-
ing ImageNet-V2 [16], ImageNet-Sketch [18], ImageNet-
A [7], and ImageNet-R [6].

1.2. Attribute Search
Inspired by DARTS [11], we employ a differentiable search
method to identify the optimal content and quantity of at-
tributes for our proposed attribute-anchored form. The
search process is conducted for 10 epochs with a batch size
of 32. We use SGD to optimize the soft prompts θ with
an initial learning rate of 0.002. and Adam to optimize the
weight vector α with an initial learning rate of 0.02. In
our experiments, we use 5 attribute bases, which generate
31 (i.e., C1

5 +C2
5 +C3

5 +C4
5 +C5

5 ) candidate combinations
for the search process.

Tab. S4 presents the five attribute bases generated by the
LLM, alongside the optimal attribute combination identified
after the search. Furthermore, Tab. S5 displays the final
weights of all candidate combinations from the search stage
on the Caltech-101 dataset.

1.3. Base-to-Novel Generalization
Baseline Methods. To evaluate ATPrompt, we integrate
it with several leading textual-based prompt learning ap-
proaches, including CoOp [22], CoCoOp [21], MaPLe [8],
DePT [20] and PromptKD [10]. The experimental settings
are detailed below.
Settings. Our framework is implemented in PyTorch [15]
and all experiments were conducted on a single NVIDIA
A800 GPU. Following the baseline methods, we use a stan-
dard data augmentation scheme of random resized crop-
ping and flipping. We employe Stochastic Gradient De-
scent (SGD) as the optimizer. By default, the soft token
lengths for attribute and class tokens are set to be identical,

as attribute and class tokens are considered equally impor-
tant. The specific implementation details for each baseline
method are presented as follows:
CoOp+ATPrompt: Following the baseline, we use a batch
size of 32 and an initial learning rate of 0.002. The origi-
nal paper reports a learnable prompt length of M = 16 for
ResNet-50 but does not specify a length for ViT-B/16. In
our setup, we set the sofo token length for both the attribute
and class tokens to 2. While the baseline model is trained
for 200 epochs, we reduce the training to 100 epochs while
maintaining the same cosine decay schedule. Figure S1 il-
lustrates the architectural differences between the original
CoOp and CoOp+ATPrompt.
CoCoOp+ATPrompt: We adhere to the baseline’s set-
tings with a batch size of 1 and an initial learning rate of
0.002. Whereas the original paper specifies a soft class to-
ken length of 4, we set the length of our learnable tokens for
the attribute and class token to 2. We adopt the same train-
ing schedule as the baseline: 10 epochs with cosine decay.

CoCoOp’s original design uses a meta-network to gen-
erate offsets for all soft prompt tokens. We retain this
meta-network but modify its application: the meta tokens
now serve as offsets exclusively for the class soft tokens,
[T1], ..., [TM ], as shown in Fig. S2.
MaPLe+ATPrompt: We adhere to the baseline hyperpa-
rameters, utilizing a batch size of 4 and an initial learning
rate of 0.0035. We diverge from the original prompt con-
figuration; whereas the baseline sets the learnable prompt
length to 2, our method sets the soft token lengths of both
the attribute and the class token to 4. The training schedule
remains consistent with the baseline.

The primary architectural modification in MaPLe + AT-
Prompt concerns the projection mechanism. The original
MaPLe framework inputs all textual soft tokens into a pro-
jection layer to generate corresponding visual tokens, which
are then fused into the image encoder. Our approach, how-
ever, selectively inputs only the class soft tokens into this
projection layer, while the attribute tokens are preserved
without modification. This architectural difference is visu-
alized in Fig. S3.
DePT+ATPrompt: We adopt the baseline’s training con-
figuration: a batch size of 32, a learning rate of 0.0035, a
balance weight of λ=0.7, and a duration of 10 epochs. Our
primary configuration for DePT+ATPrompt uses a learn-
able token length of 4. For datasets with lower complexity,
namely Caltech-101, OxfordPets, and StanfordCars, we ad-
just these parameters, setting the soft token length to 2 and
the balance weight to 0.6. The architectural differences be-
tween the DePT and DePT+ATPrompt models are detailed
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Figure S1. Architectural comparison between CoOp and CoOp+ATPrompt.
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Figure S2. Architectural comparison between CoCoOp and CoCoOp+ATPrompt. In CoCoOp+ATPrompt, meta tokens are only added as
offsets to class soft tokens.

in Fig. S4.

2. Additional Experiments

2.1. Ablation Study

Attribute Order. In the main paper, our experiments con-
firm that the order of attributes does not significantly im-
pact model performance, with results fluctuating within an
acceptable range. Here we provide additional experiments
in Tab. S1 to support this observation.
Attribute Position. We also investigated the impact of at-
tribute token positioning within the prompt. Fig. S5 visu-
alizes the positions tested, and Tab. S2 presents the results.
Our findings show that the ”interval” configuration, where
attributes are placed between class tokens, yields the best
performance.
Initialization. Baseline methods typically initialize soft to-
kens using the embeddings of the phrase ”a photo of a.”
The inclusion of attribute tokens makes this strategy sub-
optimal for our method. We instead initialize class soft to-
kens ([T1], ..., [TM ]) by sampling from a Gaussian distribu-
tion with a mean of 0 and a standard deviation of 0.02. As
shown in Table S3, this random initialization provides a su-
perior starting point for training.

Attributes Base Novel HM

(shape, color) 76.32 70.39 73.24
(color, shape) 76.27 70.60 73.33

(size, habitat) 76.44 70.23 73.20
(habitat, size) 76.46 70.16 73.14

(material, function) 76.40 70.13 73.13
(function, material) 76.28 70.00 73.01

(growth, season) 76.46 70.18 73.19
(season, growth) 76.40 70.21 73.17

(color, size, shape) 76.27 69.95 72.97
(shape, size, color) 76.32 70.19 73.13

(habitat, size, shape) 76.50 70.21 73.22
(habitat, shape, size) 76.46 70.08 73.13

Searched Attributes
(color, shape) 76.27 70.60 73.33

Table S1. Comparison of different attribute orders on ImageNet.
Changes in attribute order will not significantly affect model per-
formance.
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Figure S3. Architectural comparison between MaPLe and MaPLe+ATPrompt.
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Version Base Novel HM

Baseline (CoOp) 76.47 67.88 71.92

(a) Interval (Ours) 76.27 70.60 73.33
(b) Adjacent-front 76.39 70.22 73.18
(c) Adjacent-middle 76.46 70.11 73.15
(d) Adjacent-end 76.34 70.31 73.20
(e) Separate 76.48 70.08 73.14

Table S2. Performance results of attribute tokens at different po-
sitions in ATPrompt on ImageNet. The interval version achieves
best results.

Attribute Base Novel HM

“a photo of a” 76.40 70.07 73.10
Random Normal Init 76.27 70.60 73.33

Table S3. Comparison of different initialization ways on Ima-
geNet. Random normal initialization performs better.

3. Discussion
Comparison with Direct LLM Queries. Directly query-
ing an LLM for universal attributes presents two challenges:

determining the optimal attribute content and identifying
the ideal number of attributes. Our experiments suggest
that two attributes are often optimal. Therefore, users can
bypass our search process by directly prompting the LLM
to summarize two universal attributes. This offers a sim-
pler approach, though it may result in a slight performance
trade-off.
Why do attributes searched on a source dataset (Ima-
geNet) generalize well? The attributes identified on Ima-
geNet (e.g., color, shape) are fundamental properties of nat-
ural objects. Representations learned under the guidance of
these universal attributes are therefore inherently generaliz-
able and transfer effectively to other datasets and classes.
Why does ATPrompt not outperform regularization-
based methods in isolation? ATPrompt is a plug-in mod-
ule designed to optimize the prompt’s structure. In con-
trast, regularization-based methods are often comprehen-
sive frameworks that employ multiple components (e.g.,
learnable visual prompts, MLPs) simultaneously. While
ATPrompt may not outperform these multi-faceted ap-
proaches on its own, its strength lies in its ability to be



ClassAttribute 1 Attribute2

Text Encoder

Text Encoder
A1 A2

(a) Interval Position (Ours)

(c) Adjacent-middle Position

Text Encoder

(b) Adjacent-front Position

A1 A2

Text Encoder

(d) Adjacent-end Position

A1 A2

Text Encoder

(e) Separate Position

A1 A2

Class

Class

Class

Class

Learnable Token Class Token Attribute Token

Figure S5. Comparison of attribute tokens at different positions,
taking two attributes as an example.

integrated into other methods, consistently improving their
performance beyond previous baselines.

4. Limitations and Future Works.
Beyond the limitations discussed in the main paper,
we identify the following directions for future research:
(1) While our differentiable search method is efficient, we
aim to further enhance the attribute discovery process. A
promising direction is to leverage Multimodal Large Lan-
guage Models (MLLMs), potentially using techniques like
Chain-of-Thought (CoT), to better automate the selection of
optimal attribute content and quantity. (2) Our current ap-
proach embeds fixed, explicit attributes into the prompt. In
the future, we plan to explore a transition to implicit, learn-
able attributes. This would enable the model to discover
optimal attributes in a data-driven manner during training,
potentially unlocking further performance gains.



Dataset Attribute Bases Searched Attributes

ImageNet-1K color, size, shape, habitat, behavior (color, shape)

Caltech-101 shape, color, material, function, size (shape,size)

Oxford Pets loyalty, affection, playfulness, energy, intelligence (playfulness, energy)

Stanford Cars design, engine, performance, luxury, color (luxury)

Flowers-102 color, flower, habitat, growth, season (color, habitat, growth)

Food-101 flavor, texture, origin, ingredients, preparation (flavor, preparation)

FGVC Aircraft design, capacity, range, engines, liveries (design, range)

SUN-397 architecture, environment, structure, design, function (function)

DTD pattern, texture, color, design, structure (pattern, color, design)

EuroSAT habitat, foliage, infrastructure, terrain, watercourse (habitat)

UCF-101 precision, coordination, technique, strength, control (precision)

Table S4. Attribute bases and searched results for each dataset.

Attribute Bases shape, color, material, function, size

Attribute Combinations
& Corresponding Weights

(shape), weight: 0.298
(color), weight: 0.004

(material), weight: 0.002
(function), weight: 0.002

(size), weight: 0.003
(shape, color), weight: 0.003

(shape, material), weight: 0.006
(shape, function), weight: 0.000

(shape, size), weight: 0.565
(color, material), weight: 0.000
(color, function), weight: 0.001

(color, size), weight: 0.005
(material, function), weight: 0.000

(material, size), weight: 0.002
(function, size), weight: 0.002

(shape, color, material), weight: 0.002
(shape, color, function), weight: 0.002

(shape, color, size), weight: 0.000
(shape, material, function), weight: 0.001

(shape, material, size), weight: 0.085
(shape, function, size), weight: 0.001

(color, material, function), weight: 0.001
(color, material, size), weight: 0.000
(color, function, size), weight: 0.002

(material, function, size), weight: 0.001
(shape, color, material, function), weight: 0.001

(shape, color, material, size), weight: 0.001
(shape, color, function, size), weight: 0.001

(shape, material, function, size), weight: 0.005
(color, material, function, size), weight: 0.001

(shape, color, material, function, size), weight: 0.001

Table S5. Output results after 40 epochs of attribute searching on the Caltech101 dataset.
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