Anti-Tamper Protection for Unauthorized Individual Image Generation

Supplementary Material

In the appendix, we will include more experimental re-
sults and the detailed settings for anti-tamper perturbation
(ATP).

1. Details of the Anti-tamper Perturbation
1.1. Hyper-parameter configuration

Experiment Environment. All experiments were con-
ducted on a server equipped with 4 L40S GPUs (each with
48G) and an Intel(R) Xeon(R) Gold 6426Y CPU. The sys-
tem had 251 GB of RAM. The software environment in-
cluded Pytorch 2.4.1 running on Ubuntu 22.04.4 LTS, with
CUDA 12.3 and cuDNN 9.1.0.70 for GPU acceleration. We
didn’t do distributed training, so the experiment can be con-
ducted using one GPU.

Authorization Perturbation Hyper-Parameters. The
authorization perturbation network is trained on FFHQ for
65,000 steps with a batch size of 8. For the weights of the
loss function: Agqy = le — 3, Areec = 0.7, Apeqg = 10. The
length of the authorization message m is 32, and the default
mask ratio p is 0.5.

Protection Perturbation Hyper-Parameters. APT can
adopt the existing protection design, and different baselines
have varying choices for PGD radius and step size. Un-
like the baselines, our method performs calculations in the
frequency domain, so we did not select the same hyperpa-
rameters as the baseline.

Method CelebA-HQ VGGFace2
Radius / Step Size Radius / Step Size
Anti-DB+ours 5e-2/5e-3 250e-3 / 25e-3
AdvDM-+ours le-1/2e-3 250e-3 /25e-3
CAAT+ours 5e-2/5e-3 250e-3 /25e-3
MetaCloak+ours 150e-3 / 5e-3 200e-3 / 5e-3
Table 1. PGD Radius and Step Size for different methods on

CelebA-HQ and VGGFace2.

We observed the loss performance after adapting the base-
line to our algorithm and selecting the appropriate PGD ra-
dius and step sizes. However, we did not perform detailed
hyperparameter tuning experiments, as our main objective
was to demonstrate that our method does not degrade the
baseline’s protection performance.
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Figure 1. The ROC curve of different metrics.

1.2. Metric Selection

To select suitable metrics for evaluating the protection per-
turbation, we choose six metrics from the metrics adopted
by existing works [2, 3, 7]: ISM [2], CLIP-IQA [5],
BRISQUE [4], LIQE [8], CLIP-IQAC [3], IR [6]. When
the model can’t detect the face, the ISM value is set to -1
to guarantee that all generated images can get a correspond-
ing ISM value. We first generate individual images using
unprotected images from CelebA-HQ and those protected
with Anti-DB. For each subject, we generate 16 images (50
subjects in total). We then calculate the value of the gen-
erated image’s six metrics accordingly. We assume that the
Anti-DB can often successfully protect the image when at-
tackers do not make purification attempts. As a result, if the
metric can classify images generated from protected images
and those generated from unprotected images, it should be
a reliable metric for evaluating protection performance. Im-
ages generated from protected images are categorized as
negative samples, while those generated from unprotected
images are categorized as positive samples. We then draw
the ROC curves of the protection performance metrics, as
shown in Figure 1. Among the metrics, CLIP-IQAC
and LIQE show the highest AUC values, demonstrating the
strongest discriminatory ability. As a result, we adopt them
for the Standard Protection Performance Comparison in
Section 4.1 (FDFR and ISM are also adopted, as ISM is
the only metric among them that is directly related to fa-
cial identity. Furthermore, FDFR and ISM are typically
computed together [2].). For the experiment of the Pro-
tection Performance Under Attack Scenario, we need to
select one metric for calculating the Protection Success Rate



Distribution of LIQE under Different Conditions

]
0.7 ! Condition
H [ clear
0.6 “ : [ origin
0.5 \‘ 1 1 jpeg70
' \ 1 1 jpeg50
z 04 \ | [ resize2x
o U. I .
GCJ [ H [ resize4dx
093 | : GridPure
i
0.2 i
1
1
0.1 |
0.0
1 2 3 4 5 6

LIQE Value
(@)

Distribution of CLIP-IQAC under Different Conditions

0.25
0.20
)
@ 0.15
C
[
o
0.10
0.05
0.00 =
-1.0 -0.5 0.0 0.5 1.0
CLIP-IQAC Value
(b)

Figure 2. (a) Distributions of generated images evaluated by LIQE metric. (b) Distributions of generated images evaluated by CLIP-IQAC

metric. The red dashed line illustrates the PSR threshold.

(PSR). We use the property of the ROC curve to decide the
threshold of PSR. We select the threshold that can mini-
mize /(1 — TPR)? + FPR2, where TPR denotes true
positive rate and F'PR denotes false positive rate. The
threshold for CLIP-IQAC and LIQE are 0.1318359375,
2.05078125, respectively.

Subsequently, we evaluate the performance of these met-
rics in capturing the impact of purification attempts on the
protection mechanism. The distribution of the metrics for
generated images is visualized through kernel density es-
timation. Specifically, “clear” and “origin” represent the
generation results using unprotected and protected images,
respectively. At the same time, the remaining categories
correspond to the outcomes of applying the respective pu-
rification methods to protected images before generation.

As shown in Figure 2, the results demonstrate that CLIP-
IQAC and LIQE effectively reflect the influence of purifica-
tion attempts. Notably, following “resize 4x”, “jpeg 507,
and “GridPUre”, the resulting distributions exhibit a con-
vergence trend toward those of “clear.”” However, it can be
observed that the PSR threshold of LIQE fails to capture
the trend, as the majority of the samples fall to the left of
the threshold. In contrast, CLIP-IQAC does not exhibit this

issue, making it the preferred choice for calculating PSR.

1.3. Threshold Setting

We adopt Anti-DB for ATP to perturb the images in the
CelebA-HQ test set. Then, we adopt purification techniques
to purify the image. Figure 3 shows distinct differences in
bit-error rate with and without purification. Since we aim
to detect the occurrence of purification through the bit-error
threshold, when the occurrence of purification significantly
impacts the distribution of bit-errors, setting the threshold
becomes a straightforward task. As a result, we set the bit-
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Figure 3. The distribution of bit-error under different purification
settings. “Origin” denotes no purification applied. The red dashed
line illustrates the PSR bit-error threshold.

error threshold of PSR to 3/32. We adopt this value across
different datasets and various protection perturbations, con-
sistently finding that it can be effectively used to reject pu-
rification attempts.

1.4. Frequency-domain Sensitivity Analysis

In this section, we analyze why frequency-domain perturba-
tion is inherently more sensitive (i.e., vulnerable) than the
pixel-domain perturbation to the purifications. For pixel-
domain purification (e.g., resizing), the vulnerability arises
because the Block DCT computes each frequency coeffi-
cient as a weighted sum of all pixel values in a block. Thus,
even a minor modification to a single pixel can affect all
frequency coefficients. For frequency-domain purification
(e.g., JPEG), the vulnerability stems from the fact that JPEG
compression directly quantizes the frequency coefficients.
These changes may be smoothed out in the pixel domain
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Figure 4. Comparison of Protection Success Rate for different methods across various purification settings. (Generated by prompt “a dslr

portrait of sksperson’)

Average Change Rate \ Frequency Domain Pixel Domain
4x Resizing 0.9714 0.7788
JPEG Compression (Q=50) 0.9594 0.8445

Table 2. The average change rate of coefficients and pixel values
after performing different purifications.

due to the inverse DCT and pixel rounding. To support this
explanation, we define the change rate as the proportion
of frequency coefficients or pixel values that vary before
and after purification. We evaluate it on CelebA-HQ. As
shown in Table 2, the frequency-domain perturbations have
a higher probability of being changed after the purification,
resulting in the inherent vulnerability.
Comparison of high- vs. low-frequency resilience to
purification. While it is commonly assumed that high-
frequency components are more vulnerable to traditional
purification methods (e.g., resizing), our findings show that
advanced purification techniques such as GridPure chal-
lenge this assumption. We want to share that different pu-
rification techniques have different preferences for altering
frequency bands. We computed the average normalized
variance of the DCT coefficient differences (within 16x16
blocks) before and after purification. As shown in the Fig-
ure 5, resizing primarily affects higher frequency bands
(green-box region), whereas GridPure significantly alters
low-frequency bands (red-box region).

Consequently, we adopt a random and uniform perturba-
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Figure 5. Visualization of the average normalized variance of the
DCT coefficient differences (within 16x16 blocks) before and af-
ter purification.

tion design in this project to ensure sensitivity to different
purifications.

2. More Experiment Results

2.1. Influence of Algorithm Design on Mask-
guidance

In this experiment, we aim to demonstrate that Algorithm
1 validates the mask guidance. As outlined in the method-
ology section 3.2, the design of the projected gradient de-
scent algorithm using Equation 8 is intended to invalidate
the mask guidance. We verify this through a simulation ex-
periment.



(a) By Equation 8 (b) By Algorithm 1

Figure 6. Visualization of change in the frequency domain after
the gradient descent. The visualizations depict the changes in fre-
quency domain coefficients after the updates, where black repre-
sents no change, and brighter values indicate greater changes.
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Figure 7. Visualization of the absolute difference in one 16x16
DCT coefficient map before and after applying the protection per-
turbation, along with the corresponding guiding mask.

Specifically, we generate random gradients in the fre-
quency domain, ensuring they are concentrated in the top-
left 128 x 128 region. A 512 x 512 image is transformed
into the frequency domain via DCT, and a one-step gradi-
ent descent is conducted using Equation 8 and Algorithm 1
(the step size is 1, and the PGD radius is 1). Subsequently,
we visualize the changes in frequency domain coefficients
after the single gradient descent step. As illustrated in Fig-
ure 6, our algorithm successfully confines the coefficient
updates to the designated region in the frequency domain,
whereas the original algorithm fails to achieve such precise
localization.

In addition to the simulation experiment, we also pro-
vide a visualization of the absolute difference in one 16x16
DCT coefficient map before and after applying the protec-
tion perturbation using Algorithm 1, along with the corre-
sponding guiding mask used during optimization. As illus-
trated in Figure 7, the perturbation primarily affects regions
where the guiding mask is activated (i.e., mask value = 1),
confirming that the mask guidance effectively constrains the
perturbation by Algorithm 1 (Improved Frequency Domain
PGD).

2.2. Repeat Main Experiments with different
prompt

Following the experimental setup described in [2, 3], we
evaluate the protection performance of our method using an
alternative prompt: “a dslr portrait of sks person”, to gen-
erate individual images. We adopt the same experimental
setup described in Section 4.1, with the sole distinction be-
ing the prompt utilized.

Figure 4 shows that, with the new prompt, ATP continues
to safeguard individual image generation effectively. This is
because the integrity-check mechanism prevents generation
before the prompt is utilized, ensuring that the performance
of this mechanism remains unaffected by variations in the
prompt. Table 3 reveals that, under the new prompt, ATP
still performs comparably to the original protection pertur-
bation approaches when the purification techniques are not
applied.

2.3. Generalizability Analysis

We report the protection performance of ATP (CAAT)
trained on SD2.1 when applied to a different diffusion
model (SD1.5) and personalization method (SVDiff [1]) us-
ing CelebA in Table 4. We compare the protection perfor-
mance of ATP against that of the unprotected baseline (i.e.,
without any perturbation applied).

The results demonstrate that ATP is generalizable across
diffusion models and personalization techniques.

2.4. Performance Trade-off on Mask Ratio

The authorization and protection perturbations in the fre-
quency domain can be distinguished based on the ran-
dom mask M. The mask ratio p controls the region in
the frequency domain used for authorization versus protec-
tion. This experiment shows that adjusting the mask ratio
achieves a performance balance between protection and au-
thorization for the ATP.

For example, as the mask ratio increases, a larger portion
of the frequency domain will be allocated to authorization.
As shown in Table 6 and Table 7, the increase in mask ratio
leads to a decrease in bit-error, reflecting an improvement
in message embedding accuracy. It also decreases protec-
tion performance, as LIQE, CLIP-IQAC, ISM, and FDFR
scores indicate. Thus, we adopt a mask ratio of 0.5 as the
default setting to achieve a balanced trade-off between au-
thorization and protection performance.

2.5. Performance Trade-off on Block Size

The frequency domain transformation is achieved by
BDCT. One of the hyperparameters for it is the size of the
Block. In this section, we report the influence of this hyper-
parameter on the information hiding of authorization per-
turbation. We train the authorization model using different



CelebA-HQ VGGFace2
CLIP-IQAC] LIQE] ISM] FDFR?T | CLIP-IQAC] LIQE] ISM| FDFR?
Anti-DB -0.2047 1.3403 0.3944 0.3775 -0.4274 1.0228  0.3233  0.7950
Anti-DB+QOurs -0.3085 1.1027 0.3509 0.4513 -0.4635 1.0250 0.3073  0.6850
AdvDM -0.2979 1.0450 0.3193  0.6325 \ -0.3763 1.0305 0.3650 0.6213
AdvDM+Ours -0.3367 1.0459 0.3634 0.4638 -0.4703 1.0126  0.3103  0.6538
CAAT -0.1927 1.3018 0.4139 0.3025 \ -0.4890 1.0080 0.2819  0.7888
CAAT+Ours -0.3257 1.0999 0.3725 0.4075 -0.4902 1.0192 0.2914 0.6963
MetaCloak -0.2573 1.4254  0.3892  0.5000 \ -0.4485 1.1075 0.3513 0.8613
MetaCloak+QOurs -0.4049 1.0891 0.3488 0.7975 -0.4694 1.0447 03500 0.8875

Table 3. Quantitative results for CelebA-HQ and VGGFace?2 datasets across various metrics. (Generated by prompt “a dslr portrait of sks

person”)
SD1.5 + DreamBooth when purification is not applied.
CLIP-IQAC|  LIQEJ ISM| FDFR?T
Origin 0.5007 45427 06824 0.0125 CLIP-IQAC) LIQE, 1SMI FDEFRT
ATP -0.2893 1.1929 04329  0.2988 Origin (No Perturb) 0.4659 42340 07053  0.0975
Authorization Alone 0.3258 3.6935 0.6414  0.1075
SD2.1 + SVDiff ATP (CAAT) -0.3568 1.0768 0.4315 0.6338
CLIP-IQAC LIQE ISM FDFR
Origin 0 38%7 + 4 3Q70i 0 667¢9 0.1 33;{ Table 5. The protection performance using only the authorization
ATP _0'.3307 1:0 484 02386 1 025575 perturbation is significantly worse than that of ATP.

Table 4. Protection Performance of ATP when generation model
and algorithm are changed.
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Figure 8. The Bit-error variation under different block size.

block sizes and evaluate it on CelebA-HQ. Figure § visu-
alizes the variation in Bit-error under different block sizes.
Since the block is square-shaped, we use its side length to
represent the block size. It can be observed that a size of
16x 16 yields the lowest Bit-error, supporting our design
choice adopted in the project.

2.6. Protection Performance Achieved Using Only
Authorization Perturbation

In this section, we discuss the protection performance when
we don’t include protection perturbation in the ATP de-
sign. We compare the protection performance of images
with no perturbation, images with authoirzation perturba-
tion and images with ATP (taking CAAT as protection per-
turbaiton) in CelebA-HQ. As shown in the Table 5, autho-
rization perturbation alone fails to provide strong protection

As a result, the combination of protection perturbation
and authorization perturbation (ATP) is crucial for achiev-
ing reliable protection.

2.7. Repeat Experiments on VGGFace2

We repeat the experiment on VGGFace? to further validate
the credibility of our conclusions in Section 4. We adopt the
same experimental setup described in Section 4, with the
sole distinction being the dataset utilized. The experiment
results are shown in Table 8 and Figure 9.

2.8. Visualization of Perturbed Images

In Figure 10, we present perturbed images generated us-
ing different methods from the CelebA-HQ and VGGFace?2
datasets. We observe that while perturbations are difficult

Ratio Bit-error (¢ —3)| CLIP-IQAC] LIQE| ISM| FDFR1
0.25 0.7813 -0.3561 1.0471  0.3805  0.6400
0.50 0.4688 0.3139 10741 04647 05213
075 0.3125 -0.1480 13582 0.5765  0.2225

Table 6. Performance comparison for different mask ratios on
CelebA-HQ.

Ratio Bit-error (¢=3)| CLIP-IQAC| LIQE| ISM| FDFR1
0.25 3.1250 0422682 1.135657 0.205465 0.91375
0.50 0.7813 0386397  1.098367 0.254911 0.81875
0.75 1.2500 -0.371436 1.03989 0340458  0.70625

Table 7. Performance comparison for different mask ratios on VG-
GFace?.
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Table 8. Comparison of different fusion designs with Bit-error
values on VGGFace2.
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Figure 9. Sensitivity of ATP to different types of purification.
The x-axis indicates the hyperparameter of different purifications,
while the y-axis indicates the Bit-error. The images are from VG-
GFace2.

to detect at normal scales, they become noticeable when
viewed at an enlarged scale. This remains an unresolved
challenge in the field and a focus of our future research ef-
forts.

2.9. Visualization of Generation Results Applied
Purification Techniques

We prepared visual cases to illustrate how purification tech-
niques bypass existing protection mechanisms. Specifically,
we present the results of individual image generation for im-
ages from CelebA-HQ and VGGFace? after applying differ-
ent protection perturbation algorithms. As demonstrated in
Figure 11 and Figure 12, purification can bypass the protec-
tion provided by protection perturbation, compromising the
safeguarding of individual image generation.

2.10. More Qualitative Results of Main Experi-
ments

We present additional qualitative comparison results across
various methods under two datasets (i.e., CelebA-HQ, VG-
GFace?2) and two different prompts (i.e., a photo of sks per-
son, a dslr portrait of sks person) in Figure 13, Figure 14,
Figure 15, and Figure 16.

2.11. Scalability and Computational Efficiency
Analysis

Scalability. A safety checker is deployed by the widely
used diffusion model library “diffusers”, which takes up

1159.60 MB. The authorization model only takes up 1.58
MB, which should be affordable by the service providers.

Computational Efficiency. The ATP requires extra time in
authorization message hiding and verification. With batch
size = 4, the averaged inference time costs are: Autoen-
coder encoding/decoding: 0.0201s/0.0274s; BDCT + 1B-
DCT: 0.0016s. In the protection phase, ATP using CAAT
as protection perturbation performs autoencoder encoding
once and applies mask-guided PGD, which requires two ad-
ditional BDCT+IBDCT operations per PGD step. This re-
sults in 0.38% increase of the total protection time com-
pared to the original CAAT protection (77.33s). In the
generation phase, autoencoder decoding is performed once.
When considering a generation method like DreamBooth
(341.9s), the added decoding introduces 0.008 % increase.
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Figure 11. Visual cases showing the purification results bypassing the protection mechanisms on images from the CelebA-HQ dataset.
“Clean” indicates no purification applied.
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Figure 12. Visual cases showing the purification results bypassing the protection mechanisms on images from the VGGFace2 dataset.
“Clean” indicates no purification applied.
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Figure 13. Qualitative comparison of original perturbation algorithms and their ATP modified versions in CelebA-HQ.
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Figure 14. Qualitative comparison of original perturbation algorithms and their ATP modified versions in CelebA-HQ.
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Figure 15. Qualitative comparison of original perturbation algorithms and their ATP modified versions in VGGFace2
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Figure 16. Qualitative comparison of original perturbation algorithms and their ATP modified versions in VGGFace2
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