AnyI2V: Animating Any Conditional Image with Motion Control

Ziye Li'  Hao Luo*?

!Fudan University

Xincheng Shuai'
DAMO Academy, Alibaba group

Henghui Ding!™
SHupan Lab

https://henghuiding.com/AnyI2V/

Appendix
A.1. More Implementation Details

In this section, we provide a more detailed explanation of
our implementation.

Details of Optimization. During the latent code op-
timization stage, we enable fpl6 mode to accelerate the
process and employ the AdamW [5] optimizer with a
learning rate of 0.01.

Details of DDIM Inversion. We integrate our method
into three frameworks: AnimateDiff [4], Lavie [9], and
VideoCrafter2 [1]. AnimateDiff adopts a training strategy
where only the newly added temporal attention layer is
partially trained, while other modules remain fixed. This
approach keeps the base model intact and focuses training
on temporal attention modules. Consequently, during the
DDIM inversion phase, we disable the temporal attention
layer when processing a single image, maintaining consis-
tency with the backbone model design.

On the other hand, both Lavie and VideoCrafter2 adopt
a training strategy of joint image-video training, thereby
granting them the ability to generate single frames as
well. Lavie additionally employs a temporal attention layer,
whereas VideoCrafter2 integrates both a temporal attention
layer and a temporal convolution layer. When processing
a single frame, we disable temporal modules to align the
inference process with typical image-generation pipeline.

Details of loss function. The target loss function of our
method is defined as:

g = |ari o 0 o (B3 - sa(mis)|

where Fy[B:] is a feature that is unrelated to 2;. You might
wonder why we still employ the stop-gradient operation.
The reason is that when optimizing the latent, we utilize the
query across different layers. Without stopping the gradient,
computing the loss at a later layer would backpropagate
gradients through the earlier query, since it remains part of
the computational graph.
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Figure 1. The structure of the video diffusion model.

Details of Model Structure. The Fig. | shows the
explicit model structure of our diffusion model. The
decoder consists of four submodules operating at differ-
ent resolutions. Each submodule contains three spatial
blocks and three temporal blocks, and these features are
indexed in the format i . j, corresponding to the respective
Upblocks.iand Spatial blocks.j.
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Figure 2. The PCA visualization of residual hidden state and query
extracted from different modality images.

Understanding Images from Different Modalities.
AnyI2V can understand unnatural images because the
backbone is capable of capturing similar semantic
representations across different modalities. We visualize



the features using PCA by stacking them as a single group.
The corresponding result can be seen in Fig. 2

Controlling multiple objects. AnyI2V can control
multiple objects since our proposed semantic mask can
effectively generate masks for each object in bounding box,
reducing the impact of overlapping during movement which
can be seen in Fig. 3.

Figure 3. Controlling object movement of multiple objects.

Fidelity Metric for Structure Control. In the table
below (Tab. 1), we measure the structural fidelity of the
first frame using the DINO score, by extracting its structural
features. AnyI2V underperforms ControlNet in structural
control due to its zero-shot nature. For further discussion
on structure control, please refer to A.2.

Structure Similarity Depth HED Canny Normal Seg

AnylI2V (ours) 0.759 0.824 0.833 0.828 0.871
ControlNet 0.779  0.899  0.925 0.871  0.907

Table 1. Structural Fidelity Comparison with ControlNet.

A.2. Further Explanation For Limitations

In the main text, we mentioned some limitations of AnyI2V.
In this chapter, we will further explain them by showing
some failure cases of our method.

Controlling Very Large Motion. Since AnyI2V adopts
a latent optimization strategy for motion control, it may
struggle with alignment when the target bounding box
undergoes significant displacement. As shown in Fig. 4,
the generated motion follows the trajectory when the mo-
tion amplitude is small to moderate. However, when the
motion becomes excessively large, like in SynFMC [7] or
other video datasets [2, 3], our method encounters difficul-
ties in maintaining control. Similarly, the training-based
DragNUWA [10] also struggles with very large motion,
indicating that this remains a common challenge that needs
to be addressed.

Ambiguous Occlusion. While AnyI2V can handle
various spatial conditions, it struggles to determine the
correct depth order when overlaps occur, as shown in Fig. 5.
Although AnyControl [8] has addressed this issue to a
certain extent, resolving it in a training-free way remains
an open challenge.

Reference Frame Control. Our method controls the
first frame by injecting features and regulates motion by
optimizing the latent. Since both feature injection and latent
optimization occur in the early stages of the diffusion de-
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Figure 5. The control results when control conditions overlap.

noising process, the control over the reference image is not
as precise as ControlNet [11].

To analyze the degree of control over the reference
frame, we conduct an experiment to examine the impact
of the time step used for latent optimization. Fig. 6
presents the results under different optimization steps. We
observe that as the number of optimization steps increases,
the first frame progressively aligns more closely with the
structure of the conditional image. However, excessive
feature injection and latent optimization leads to noticeable
degradation in the generated results.

Therefore, to balance output quality and computational
efficiency, we optimize the latent only when ' < 5.

A.3. Further Explanation of PCA Features

In the main text, we employ PCA-based dimensionality
reduction when aligning the query and state that “lower-
ranked components exhibit lower temporal consistency”.
To further clarify the motivation behind using PCA, we
visualize the lower-ranked components. The results in
Fig. 7 illustrate PCA components 98—100, which exhibit
low temporal consistency and an ambiguous spatial layout.
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Figure 7. Visualization of lower-ranked PCA components.

A.4. Additional Visual Results

Extended Visual Results on AnimateDiff. Fig. 8
presents additional examples of AnyI2V applied to the
AnimateDiff [4] backbone, showcasing the diversity and
effectiveness of our method.

Extended Visual Results on Lavie and VideoCrafter.
Fig. 9 illustrates further examples of AnyI2V using the
Lavie [9] and VideoCrafter2 [1] backbones, demonstrating
its adaptability across different frameworks.

Examples of Camera Motion Control. AnyI2V pri-
marily focuses on controlling the motion of objects. How-

ever, when an object’s attributes remain static, the method
can also achieve camera motion effects, as shown in Fig-
ure 10. Nonetheless, the camera control capability is
currently limited to simple trajectories, highlighting an area
for further exploration.

Examples of Visual Editing. AnyI2V enables visual
editing by utilizing different text prompts [6]. Figure 11
showcases a case where the input structure is a horse. By
modifying the text prompt, the generated results maintain
a natural structure and appearance, benefiting significantly
from the automatically generated semantic mask.
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Figure 8. More cases of AnyI2V on the baseline of AnimateDiff [4]
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Figure 9. The results on Lavie [9] and VideoCrafter2 [1].



Figure 10. The camera control results of AnyI2V.
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Figure 11. The results of same conditions with different prompts.
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