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1. Related Literature

1.1. Noisy Label Learning

Noisy Label Learning (NLL) has been studied extensively
over the years. Previous NLL approaches mainly focus on,
but are not limited to, the following aspects [32]: (1) Noise-
robust loss design and adjustment [23, 26, 28, 30, 38, 48];
(2) Robust architectures [4, 17]; (3) Robust regularization
[5, 10, 25, 45]. Recent SOTA NLL methods primarily mit-
igate the impact of label noise by distinguishing clean data
from noisy data using well-designed criteria (sample selec-
tion), such as the small-loss trick [6, 19], Jensen-Shannon
divergence [14, 42], and confidence-based methods [21].
However, when long-tailed data distributions are present,
most of these metrics become ineffective, as clean data from
tail classes exhibit similar training behaviors to noisy data.

1.2. Long-Tailed Learning

Long-Tailed Learning (LTL) methods primarily address the
class imbalance problem through re-sampling [3, 13, 31]
and re-weighting [29, 35, 37, 47] techniques. Additionally,
recent work has emphasized the role of transfer learning in
LTL methods [15, 36, 41, 43], leveraging many classes to
aid the learning of few-shot classes in various ways. How-
ever, these methods are based on the assumption that all
training data are clean, which does not hold true in real-
world scenarios. Also, for transfer learning methods, the
main consideration is to transfer knowledge from the head
class to the tail class, but the fact that knowledge can be
transferred between classes is usually ignored.

1.3. Long-Tailed Noisy Label Learning

Long-Tailed Noisy Label Learning (LTNLL) addresses the
challenge of label noise in conjunction with long-tailed dis-
tributions. As discussed earlier, previous LTNLL methods
can be broadly classified into two categories: discrimina-
tive methods [11, 12, 24, 34] and representational methods
[1, 44, 46]. Among these, SFA [18] and RCAL [46], stand
out as the current SOTA methods.

2. Technical Details
2.1. Noisy Label Learning
• DivideMix [19]. DivideMix simultaneously trains

two networks, leveraging dataset co-division, label co-
refinement, and co-guessing to achieve robustness against
label noise.

• DISC [21]. DISC introduces a Dynamic Instance-specific
Selection and Correction approach for noisy label learn-
ing (NLL). It effectively divides noisy data into subsets by
setting instance-specific thresholds, thus mitigating label
noise during model training.

2.2. Long-tailed Learning
• cRT [13]. This approach suggests that data imbalance

does not hinder the learning of high-quality representa-
tions. Strong long-tailed recognition can be achieved by
adjusting only the classifier, with the learning process de-
coupled into representation learning and classifier learn-
ing. cRT retrains the classifier using class-balanced sam-
pling.

• RIDE [37]. RIDE reduces model variance through mul-
tiple experts, mitigates model bias with a distribution-
aware diversity loss, and cuts computational cost with a
dynamic expert routing module.

• SADE [47]. Building on RIDE, SADE introduces a
novel test-time expert aggregation strategy that uses self-
supervision to aggregate the learned experts, addressing
unknown test class distributions.

• DSCL [41]. DSCL decouples two types of positive sam-
ples in self-contrastive learning (SCL) and optimizes their
relationships toward distinct objectives to alleviate the
impact of class imbalance. It proposes a patch-based self-
distillation module that transfers knowledge from head
to tail classes to address the underrepresentation of tail
classes, utilizing patch-based features to identify shared
visual patterns across instances.

2.3. Long-tailed Noisy Label Learning
• HAR [1]. HAR introduces a regularization technique that

unifies the handling of noisy labels and class-imbalanced
data. It assigns varying regularization strengths to data
points, with higher uncertainty and lower density points
receiving greater regularization.
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• RoLT/RoLT+ [39]. RoLT distinguishes mislabeled
examples from rare examples by designing a class-
dependent noise detector based on the distance to class
prototypes. RoLT+ further enhances robustness by em-
ploying semi-supervised methods.

• PCL [34]. Prototypical Classifier (PCL) does not require
additional parameters for the embedding network. Unlike
conventional classifiers, which tend to be biased toward
head classes, PCL provides balanced predictions across
all classes, even in class-imbalanced training datasets.
By leveraging this feature, noisy labels can be detected
by thresholding the confidence scores produced by PCL,
with the threshold dynamically adjusted during training.
A sample reweighting strategy is used to mitigate the im-
pact of noisy labels.

• RCAL/RCAL+ [46]. RCAL employs a representation
calibration framework that adjusts the means and covari-
ances of tail classes by weighted averages of their near-
est head classes. RCAL+ further improves robustness
through the use of semi-supervised methods.

• TABASCO [24]. TABASCO addresses label-noise learn-
ing in intrinsically long-tailed data. It introduces a two-
stage bi-dimensional sample selection process to bet-
ter separate clean and noisy samples, particularly in tail
classes. TABASCO features two complementary separa-
tion metrics, overcoming the limitations of using a single
metric in sample separation.

• SFA [18]. SFA uses a distance-based sample selection
algorithm to identify clean instances, guiding the train-
ing process. As class prototypes derived from inaccurate
supervision may be unreliable, SFA initially selects high-
confidence instances to compute the class prototypes, up-
dating them using a running average.

• OT [22]. This method proposes a pseudo-labeling ap-
proach that uses class prototypes to match distributions.
By employing optimal transport (OT), it aligns the train-
ing samples with class prototypes to mitigate the effects
of noise and imbalance. A filtering criterion is applied to
extract a clean and balanced subset of the dataset, which
helps in training a more robust model.

3. Datasets and Implementation Details
Simulated Noisy and Imbalanced Datasets. We validate
IBC on CIFAR-10 [16] and CIFAR-100 [16] with varying
noise rates and imbalance ratios. CIFAR-10 contains 10
classes, with 50,000 training images and 10,000 test images,
each of size 32 × 32. CIFAR-100 has 100 classes, with
50,000 training images and 10,000 test images, also of size
32× 32.

To simulate realistic conditions, we first create imbal-
anced versions of CIFAR-10 and CIFAR-100, followed by
label noise injection. We apply long-tailed class imbalance
by reducing the number of examples in each class using an

exponential function:

nk = n0 · kv,

where nk is the number of instances in the k-th class, n0 is
the original number of instances, and v ∈ (0, 1). The imbal-
ance ratio ρ is defined as the ratio between the sample size
of the most frequent (head) class and the most scarce (tail)
class. We simulate label noise by following the method in
[18], where the probability that the true label i is corrupted
to the noisy label j is given by:

Tij(x) =

{
1− η, if i = j,
nj

n−ni
η, otherwise,

where η is the noise rate, and ni and nj are the num-
ber of instances in classes i and j, respectively. We ex-
plore noise rates η ∈ {0.2, 0.5} and imbalance ratios ρ ∈
{50, 100, 200} in our experiments.

Real-world Noisy and Imbalanced Datasets. We also
evaluate IBC on real-world datasets, including WebVision
[20] and Clothing1M [40]. WebVision consists of 2.4 mil-
lion images crawled from the web, with 1,000 concepts
shared with ImageNet ILSVRC12. Following the “mini”
setting in [2], we use the first 50 classes of the Google re-
sized image subset and name it mini-WebVision. We test
the trained network on the WebVision-50 validation set and
the ILSVRC12 validation set. Clothing1M contains 1 mil-
lion training images, and 50k, 14k, and 10k images with
clean labels for training, validation, and testing, with 14
classes. Following the setting in [46], we exclude the 50k
and 14k clean data in our experiment.

Implementation Details. All implementation codes are
in PyTorch [27]. For both CIFAR-10 and CIFAR-100, we
use a Pre-Act ResNet-18 [8] architecture and apply standard
weak augmentations for all images. We utilize the official
MoCo implementation [9] in PyTorch. For WebVision-50,
we use the Inception-ResNet-v2 [33] backbone. For Cloth-
ing1M, we use ResNet-50 [7] as the backbone network. The
following hyperparameters were tuned across experiments:
- For MoCo training, we use SGD with momentum of 0.9,
weight decay of 5× 10−4, queue size of 4096, learning rate
of 0.03, batch size of 64, and 4096 training epochs. - For
CIFAR-10 and CIFAR-100, we warm up for 30 epochs, use
SGD with momentum of 0.9, weight decay of 5 × 10−4,
and set the batch size to 64 for 200 training epochs. The
initial learning rate is set to 0.02, reduced by a factor of
10 after 150 epochs. For CIFAR-10, we choose k from
{1, 2, 3} and δ from {0.1, 0.2, 0.3}; for CIFAR-100, k is
chosen from {10, 20, 30, 40, 50} and δ from {0.1, 0.2, 0.3}.
- For mini-WebVision, we use SGD with momentum of 0.9,



weight decay of 1 × 10−3, batch size of 32, and 100 train-
ing epochs. The initial learning rate is 0.01, reduced by a
factor of 10 after 50 epochs, with k chosen from {5, 10, 15}
and δ from {0.1, 0.2, 0.3}. - For Clothing1M, we use Adam
with a fixed learning rate of 0.001, batch size of 256, and
200 training epochs. We select k from {1, 3, 5} and δ from
{0.1, 0.2, 0.3}.

4. Algorithm

Algorithm 1 Pseudo-code of IBC

1: Input: training dataset D̃ = {(xi, yi)}ni=1, encoder
network f , classifiers Eh, Em, Et, holistic model pa-
rameter Θ, pre-training epochs Tp, total training epochs
Tmax, redistribution strength δ and k-nearest neighbor
selection parameter k.

2: for t = 1, . . . , Tp do
3: Pre-train the encoder network f with MoCo [9].
4: end for
5: for t = 0, . . . , Tmax do
6: for k = 1, . . . ,K do
7: Compute class prototypes C(t)

k by Eq. (3).
8: Compute Euclidean distance dist(C

(t)
k , xi) by

Eq. (4).
9: Obtain Dk

clean and Dk
noisy by Eq. (6).

10: end for

11: Dclean =
K⋃

k=1

Dk
clean, Dnoisy =

K⋃
k=1

Dk
noisy.

12: Compute cosine similarity and k-NN prototypes
for each instance by Eq. (7) and Eq. (8).

13: Construct three shot-specific soft labels: y
(h)
i ,

y
(m)
i , y(t)

i for each instance by Eq. (9).
14: Forward clean instances losses Lclean = Lh+Lm+

Lt by Eq. (10) ∼ Eq. (12).
15: Forward noisy instances losses Lnoisy =

MixMatch(Dclean,Dnoisy, f)
16: Backward total loss L = Lclean + Lnoisy.
17: Update parameters: Θt = SGD(L,Θt−1).
18: end for
19: return parameters of Θ.
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